Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats

Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF- 1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alter- ations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naunyn-Schmiedeberg's Archives of Pharmacology Springer Journals

Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats

Loading next page...
 
/lp/springer_journal/cobalt-treatment-does-not-prevent-glomerular-morphological-alterations-oPWiULeX5Y
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Pharmacology/Toxicology; Neurosciences
ISSN
0028-1298
eISSN
1432-1912
D.O.I.
10.1007/s00210-018-1511-7
Publisher site
See Article on Publisher Site

Abstract

Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF- 1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alter- ations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede

Journal

Naunyn-Schmiedeberg's Archives of PharmacologySpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off