Coagulation/Flocculation with Moringa oleifera and Membrane Filtration for Dairy Wastewater Treatment

Coagulation/Flocculation with Moringa oleifera and Membrane Filtration for Dairy Wastewater... The main objective of the present paper is to evaluate the use of Moringa oleifera (MO) as a natural coagulant in coagulation/flocculation/sedimentation (CFS) followed by the microfiltration (MF) or nanofiltration (NF) process in dairy wastewater treatment, focusing on determining the best association of treatments that can generate wastewater for reuse purposes. The association of CFS-MF-NF treatments showed a high removal efficiency for chemical oxygen demand (COD) (mean of 96%), turbidity, and color (mean of 99%) meeting water reuse standards, allowing the reutilization of the wastewater, in relation to the analyzed parameters. The results indicate a lower membrane fouling rate (63%), an increase in permeate flow, and better quality of the permeate, proving that the CFS-MF-NF treatment is the most suitable among all the tested treatments. Finally, the treated wastewater obtained with this process presents better quality than the wastewater obtained with the conventional treatments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water, Air, Soil Pollution Springer Journals

Coagulation/Flocculation with Moringa oleifera and Membrane Filtration for Dairy Wastewater Treatment

Loading next page...
 
/lp/springer_journal/coagulation-flocculation-with-moringa-oleifera-and-membrane-filtration-3pJs70t6a2
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Environment; Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts
ISSN
0049-6979
eISSN
1573-2932
D.O.I.
10.1007/s11270-017-3509-z
Publisher site
See Article on Publisher Site

Abstract

The main objective of the present paper is to evaluate the use of Moringa oleifera (MO) as a natural coagulant in coagulation/flocculation/sedimentation (CFS) followed by the microfiltration (MF) or nanofiltration (NF) process in dairy wastewater treatment, focusing on determining the best association of treatments that can generate wastewater for reuse purposes. The association of CFS-MF-NF treatments showed a high removal efficiency for chemical oxygen demand (COD) (mean of 96%), turbidity, and color (mean of 99%) meeting water reuse standards, allowing the reutilization of the wastewater, in relation to the analyzed parameters. The results indicate a lower membrane fouling rate (63%), an increase in permeate flow, and better quality of the permeate, proving that the CFS-MF-NF treatment is the most suitable among all the tested treatments. Finally, the treated wastewater obtained with this process presents better quality than the wastewater obtained with the conventional treatments.

Journal

Water, Air, Soil PollutionSpringer Journals

Published: Aug 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off