Coactivator complexes participate in different stages of the Drosophila melanogaster hsp70 gene transcription

Coactivator complexes participate in different stages of the Drosophila melanogaster hsp70 gene... The objective of this study was to identify transcriptional coactivators participating in transcription elongation of the hsp70 gene induced by heat shock. We found that all investigated coactivator complexes participate in transcription of this gene, as significant level of them were present at the gene promoter in its active state. For most of the coactivators (except for p300/CBP, Set2, and Mediator complex), we also observed a considerable increase of their binding level at the coding region of the gene after activation of its transcription by heat shock. We assume that coactivators CHD1, ISWI, Brm, Kismet-L, INO80, Mi-2, Gcn5, Lid/KDM5, Set1, DART1, DART4, SSRP1, PAF1, and Fs(1)h/Brd4 bind to the promoter of the active hsp70 gene and migrate to its coding region together with elongating RNA polymerase II. It can be suggested that some of these coactivators play an important role in stimulating the transition of the RNA polymerase II complex from transcription initiation to elongation stage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Coactivator complexes participate in different stages of the Drosophila melanogaster hsp70 gene transcription

Loading next page...
 
/lp/springer_journal/coactivator-complexes-participate-in-different-stages-of-the-jVU110ha1s
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795417010094
Publisher site
See Article on Publisher Site

Abstract

The objective of this study was to identify transcriptional coactivators participating in transcription elongation of the hsp70 gene induced by heat shock. We found that all investigated coactivator complexes participate in transcription of this gene, as significant level of them were present at the gene promoter in its active state. For most of the coactivators (except for p300/CBP, Set2, and Mediator complex), we also observed a considerable increase of their binding level at the coding region of the gene after activation of its transcription by heat shock. We assume that coactivators CHD1, ISWI, Brm, Kismet-L, INO80, Mi-2, Gcn5, Lid/KDM5, Set1, DART1, DART4, SSRP1, PAF1, and Fs(1)h/Brd4 bind to the promoter of the active hsp70 gene and migrate to its coding region together with elongating RNA polymerase II. It can be suggested that some of these coactivators play an important role in stimulating the transition of the RNA polymerase II complex from transcription initiation to elongation stage.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off