Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

CO2 fluid inclusions in Jack Hills zircons

CO2 fluid inclusions in Jack Hills zircons The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Contributions to Mineralogy and Petrology Springer Journals

Loading next page...
 
/lp/springer_journal/co2-fluid-inclusions-in-jack-hills-zircons-0zG50S9LGb

References (92)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Mineral Resources; Mineralogy
ISSN
0010-7999
eISSN
1432-0967
DOI
10.1007/s00410-017-1382-9
Publisher site
See Article on Publisher Site

Abstract

The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills.

Journal

Contributions to Mineralogy and PetrologySpringer Journals

Published: Jul 7, 2017

There are no references for this article.