Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture

Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower... The class B genes DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA (GLO)/PISTILLATA (PI), encoding MADS-box transcription factors, and their functions in petal and stamen development have been intensely studied in Arabidopsis and Antirrhinum. However, the functions of class B genes in other plants, including ornamental species exhibiting floral morphology different from these model plants, have not received nearly as much attention. Here, we examine the cooperative functions of TfDEF and TfGLO on floral organ development in the ornamental plant torenia (Torenia fournieri Lind.). Torenia plants co-overexpressing TfDEF and TfGLO showed a morphological alteration of sepals to petaloid organs. Phenotypically, these petaloid sepals were nearly identical to petals but had no stamens or yellow patches like those of wild-type petals. Furthermore, the inflorescence architecture in the co-overexpressing torenias showed a characteristic change in which, unlike the wild-types, their flowers developed without peduncles. Evaluation of the petaloid sepals showed that these attained a petal-like nature in terms of floral organ phenotype, cell shape, pigment composition, and the expression patterns of anthocyanin biosynthesis-related genes. In contrast, torenias in which TfDEF and TfGLO were co-suppressed exhibited sepaloid petals in the second whorl. The sepaloid petals also attained a sepal-like nature, in the same way as the petaloid sepals. The results clearly demonstrate that TfDEF and TfGLO play important cooperative roles in petal development in torenia. Furthermore, the unique transgenic phenotypes produced create a valuable new way through which characteristics of petal development and inflorescence architecture can be investigated in torenia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture

Loading next page...
 
/lp/springer_journal/co-modification-of-class-b-genes-tfdef-and-tfglo-in-torenia-fournieri-ABiLkRuCr5
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0231-8
Publisher site
See Article on Publisher Site

Abstract

The class B genes DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA (GLO)/PISTILLATA (PI), encoding MADS-box transcription factors, and their functions in petal and stamen development have been intensely studied in Arabidopsis and Antirrhinum. However, the functions of class B genes in other plants, including ornamental species exhibiting floral morphology different from these model plants, have not received nearly as much attention. Here, we examine the cooperative functions of TfDEF and TfGLO on floral organ development in the ornamental plant torenia (Torenia fournieri Lind.). Torenia plants co-overexpressing TfDEF and TfGLO showed a morphological alteration of sepals to petaloid organs. Phenotypically, these petaloid sepals were nearly identical to petals but had no stamens or yellow patches like those of wild-type petals. Furthermore, the inflorescence architecture in the co-overexpressing torenias showed a characteristic change in which, unlike the wild-types, their flowers developed without peduncles. Evaluation of the petaloid sepals showed that these attained a petal-like nature in terms of floral organ phenotype, cell shape, pigment composition, and the expression patterns of anthocyanin biosynthesis-related genes. In contrast, torenias in which TfDEF and TfGLO were co-suppressed exhibited sepaloid petals in the second whorl. The sepaloid petals also attained a sepal-like nature, in the same way as the petaloid sepals. The results clearly demonstrate that TfDEF and TfGLO play important cooperative roles in petal development in torenia. Furthermore, the unique transgenic phenotypes produced create a valuable new way through which characteristics of petal development and inflorescence architecture can be investigated in torenia.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off