CNT-based organic-inorganic composite materials with optoelectronic functionality

CNT-based organic-inorganic composite materials with optoelectronic functionality This paper focuses on the fabrication of organic-inorganic composite materials with optoelectronic functionality based on carbon nanotubes (CNTs) by chemical and physical modifications. The one-dimensionally (1D) ordered composites of rare earth phthalocyanine compounds (RePc2) encapsulated by MWCNTs were obtained using a simple capillary filling method. The CNT-templated assembly of RePc2 nanowires was performed by a phase-separation method. Two other kinds of organic-inorganic 1D-ordered optoelectronic composites were prepared using the template method: coating MWCNTs with a fluorescent poly(tripheny lamine) related co-polymer can be realized via a facile phase-separation strategy: 1D hy brid of bamboo-shaped CNTs covalently bound to RePc2. The relationship between the microstructure of the obtained 1D-ordered composites and optoelectronic properties was studied, and it was found that these ordered composites exhibited enhanced photoconductivity due to the charge transfer between the composite components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

CNT-based organic-inorganic composite materials with optoelectronic functionality

Loading next page...
 
/lp/springer_journal/cnt-based-organic-inorganic-composite-materials-with-optoelectronic-QCInR0I14Q
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856708783623528
Publisher site
See Article on Publisher Site

Abstract

This paper focuses on the fabrication of organic-inorganic composite materials with optoelectronic functionality based on carbon nanotubes (CNTs) by chemical and physical modifications. The one-dimensionally (1D) ordered composites of rare earth phthalocyanine compounds (RePc2) encapsulated by MWCNTs were obtained using a simple capillary filling method. The CNT-templated assembly of RePc2 nanowires was performed by a phase-separation method. Two other kinds of organic-inorganic 1D-ordered optoelectronic composites were prepared using the template method: coating MWCNTs with a fluorescent poly(tripheny lamine) related co-polymer can be realized via a facile phase-separation strategy: 1D hy brid of bamboo-shaped CNTs covalently bound to RePc2. The relationship between the microstructure of the obtained 1D-ordered composites and optoelectronic properties was studied, and it was found that these ordered composites exhibited enhanced photoconductivity due to the charge transfer between the composite components.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off