Clustering stability-based Evolutionary K-Means

Clustering stability-based Evolutionary K-Means Evolutionary K-Means (EKM), which combines K-Means and genetic algorithm, solves K-Means’ initiation problem by selecting parameters automatically through the evolution of partitions. Currently, EKM algorithms usually choose silhouette index as cluster validity index, and they are effective in clustering well-separated clusters. However, their performance of clustering noisy data is often disappointing. On the other hand, clustering stability-based approaches are more robust to noise; yet, they should start intelligently to find some challenging clusters. It is necessary to join EKM with clustering stability-based analysis. In this paper, we present a novel EKM algorithm that uses clustering stability to evaluate partitions. We firstly introduce two weighted aggregated consensus matrices, positive aggregated consensus matrix (PA) and negative aggregated consensus matrix (NA), to store clustering tendency for each pair of instances. Specifically, PA stores the tendency of sharing the same label and NA stores that of having different labels. Based upon the matrices, clusters and partitions can be evaluated from the view of clustering stability. Then, we propose a clustering stability-based EKM algorithm CSEKM that evolves partitions and the aggregated matrices simultaneously. To evaluate the algorithm’s performance, we compare it with an EKM algorithm, two consensus clustering algorithms, a clustering stability-based algorithm and http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Clustering stability-based Evolutionary K-Means

Loading next page...
 
/lp/springer_journal/clustering-stability-based-evolutionary-k-means-LVPz24fNU0
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-018-3280-0
Publisher site
See Article on Publisher Site

Abstract

Evolutionary K-Means (EKM), which combines K-Means and genetic algorithm, solves K-Means’ initiation problem by selecting parameters automatically through the evolution of partitions. Currently, EKM algorithms usually choose silhouette index as cluster validity index, and they are effective in clustering well-separated clusters. However, their performance of clustering noisy data is often disappointing. On the other hand, clustering stability-based approaches are more robust to noise; yet, they should start intelligently to find some challenging clusters. It is necessary to join EKM with clustering stability-based analysis. In this paper, we present a novel EKM algorithm that uses clustering stability to evaluate partitions. We firstly introduce two weighted aggregated consensus matrices, positive aggregated consensus matrix (PA) and negative aggregated consensus matrix (NA), to store clustering tendency for each pair of instances. Specifically, PA stores the tendency of sharing the same label and NA stores that of having different labels. Based upon the matrices, clusters and partitions can be evaluated from the view of clustering stability. Then, we propose a clustering stability-based EKM algorithm CSEKM that evolves partitions and the aggregated matrices simultaneously. To evaluate the algorithm’s performance, we compare it with an EKM algorithm, two consensus clustering algorithms, a clustering stability-based algorithm and

Journal

Soft ComputingSpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off