Clustering of GPI-Anchored Folate Receptor Independent of Both Cross-Linking and Association with Caveolin

Clustering of GPI-Anchored Folate Receptor Independent of Both Cross-Linking and Association with... The distribution of the glycosyl-phosphatidylinositol (GPI)-anchored folate receptor (FR) in a diffuse pattern vs. functional clusters associated with caveolae has been debated. The equivocal nature of direct localization studies is due to possible experimental artifacts such as cross-linking of the protein by the antibody probes prior to fixation and alternatively the use of a disruptive fixation method. Such studies have also been complicated by the use of cells that vastly overexpress FR. In this study a monovalent probe, i.e., a biotinylated folate affinity analogue was used to covalently label FR. Cells expressing moderate levels of FR, i.e., JAR epithelial cells expressing FR-α and recombinant CHO fibroblasts expressing FR-β, were used. The affinity label and either caveolin or antigenic sites on FR were localized by electron microscopy using colloidal gold conjugated antibody probes post-embedding in the relatively permeable LR White resin. The method avoided both receptor cross-linking and early fixation steps and also enabled the use of transport permissive conditions while labeling FR at the cell surface. The results indicate that in steady-state FR is not significantly colocalized with caveolin. However, the receptor molecules occur predominantly in clusters, independent of cross-linking, providing a physical basis for the observed kinetics of receptor internalization and recycling during folate transport. Evidence is also presented to suggest that early mild fixation will disrupt the clustering of FR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Clustering of GPI-Anchored Folate Receptor Independent of Both Cross-Linking and Association with Caveolin

Loading next page...
 
/lp/springer_journal/clustering-of-gpi-anchored-folate-receptor-independent-of-both-cross-vmknYKqDKn
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900277
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial