Clustering Nonlinear, Nonstationary Time Series Using BSLEX

Clustering Nonlinear, Nonstationary Time Series Using BSLEX Accurate clustering of time series is a challenging problem for data arising from areas such as financial markets, biomedical studies, and environmental sciences, especially when some, or all, of the series exhibit nonlinearity and nonstationarity. When a subset of the series exhibits nonlinear characteristics, frequency domain clustering methods based on higher-order spectral properties, such as the bispectra or trispectra are useful. While these methods address nonlinearity, they rely on the assumption of series stationarity. We propose the Bispectral Smooth Localized Complex EXponential (BSLEX) approach for clustering nonlinear and nonstationary time series. BSLEX is an extension of the SLEX approach for linear, nonstationary series, and overcomes the challenges of both nonlinearity and nonstationarity through smooth partitions of the nonstationary time series into stationary subsets in a dyadic fashion. The performance of the BSLEX approach is illustrated via simulation where several nonstationary or nonlinear time series are clustered, as well as via accurate clustering of the records of 16 seismic events, eight of which are earthquakes and eight are explosions. We illustrate the utility of the approach by clustering S&P 100 financial returns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Methodology and Computing in Applied Probability Springer Journals

Clustering Nonlinear, Nonstationary Time Series Using BSLEX

Loading next page...
 
/lp/springer_journal/clustering-nonlinear-nonstationary-time-series-using-bslex-NmxnRDJGkC
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Statistics; Statistics, general; Life Sciences, general; Electrical Engineering; Economics, general; Business and Management, general
ISSN
1387-5841
eISSN
1573-7713
D.O.I.
10.1007/s11009-016-9528-1
Publisher site
See Article on Publisher Site

Abstract

Accurate clustering of time series is a challenging problem for data arising from areas such as financial markets, biomedical studies, and environmental sciences, especially when some, or all, of the series exhibit nonlinearity and nonstationarity. When a subset of the series exhibits nonlinear characteristics, frequency domain clustering methods based on higher-order spectral properties, such as the bispectra or trispectra are useful. While these methods address nonlinearity, they rely on the assumption of series stationarity. We propose the Bispectral Smooth Localized Complex EXponential (BSLEX) approach for clustering nonlinear and nonstationary time series. BSLEX is an extension of the SLEX approach for linear, nonstationary series, and overcomes the challenges of both nonlinearity and nonstationarity through smooth partitions of the nonstationary time series into stationary subsets in a dyadic fashion. The performance of the BSLEX approach is illustrated via simulation where several nonstationary or nonlinear time series are clustered, as well as via accurate clustering of the records of 16 seismic events, eight of which are earthquakes and eight are explosions. We illustrate the utility of the approach by clustering S&P 100 financial returns.

Journal

Methodology and Computing in Applied ProbabilitySpringer Journals

Published: Nov 22, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off