Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells

Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes... The adenohypophysis comprises six types of endocrine cells, including PIT1-lineage cells such as growth hormone (GH)-producing cells and heterogeneous non-endocrine cells, such as pituitary stem/progenitor cells as a source of endocrine cells. We determine the expression of characteristic stem cell marker genes, including sex-determining region Y-box 2 (Sox2), in mouse pituitary-derived non-endocrine cell lines Tpit/E, Tpit/F1 and TtT/GF. We observed high expression of fibroblast growth factor (FGF) receptors in Tpit/F1 cells, which we characterised by cultivation in medium containing a basic FGF and B27 supplement as used for neural stem-cell differentiation. A 4-day cultivation of Tpit/F1 produced floating embryonic stem-cell-like clumps accompanied by a three-fold increase in Sox2 expression. Passages in these clumps maintained the proliferative activity and Sox2 expression levels. After 10 days of cultivation, Tpit/F1 cell clumps were immuno-positive for SOX2 and Ki67 (proliferation marker) and loosely attached to the well bottom. An additional 10 days of cultivation induced the emergence of GH-positive/pituitary-specific transcription factor (PIT1)-negative cells showing migration from the clumps. Pit1 overexpression in attached cells could not induce GH production. Finally, we confirmed the presence of PIT1-negative GH-producing cells (3.2–7.7 % of all GH-positive cells) in rat pituitary. Thus, we demonstrate that Tpit/F1 has the plasticity to differentiate into one type of hormone-producing cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell and Tissue Research Springer Journals

Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells

Loading next page...
 
/lp/springer_journal/clump-formation-in-mouse-pituitary-derived-non-endocrine-cell-line-ogUCNsHMls
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Human Genetics; Proteomics; Molecular Medicine
ISSN
0302-766X
eISSN
1432-0878
D.O.I.
10.1007/s00441-017-2603-2
Publisher site
See Article on Publisher Site

Abstract

The adenohypophysis comprises six types of endocrine cells, including PIT1-lineage cells such as growth hormone (GH)-producing cells and heterogeneous non-endocrine cells, such as pituitary stem/progenitor cells as a source of endocrine cells. We determine the expression of characteristic stem cell marker genes, including sex-determining region Y-box 2 (Sox2), in mouse pituitary-derived non-endocrine cell lines Tpit/E, Tpit/F1 and TtT/GF. We observed high expression of fibroblast growth factor (FGF) receptors in Tpit/F1 cells, which we characterised by cultivation in medium containing a basic FGF and B27 supplement as used for neural stem-cell differentiation. A 4-day cultivation of Tpit/F1 produced floating embryonic stem-cell-like clumps accompanied by a three-fold increase in Sox2 expression. Passages in these clumps maintained the proliferative activity and Sox2 expression levels. After 10 days of cultivation, Tpit/F1 cell clumps were immuno-positive for SOX2 and Ki67 (proliferation marker) and loosely attached to the well bottom. An additional 10 days of cultivation induced the emergence of GH-positive/pituitary-specific transcription factor (PIT1)-negative cells showing migration from the clumps. Pit1 overexpression in attached cells could not induce GH production. Finally, we confirmed the presence of PIT1-negative GH-producing cells (3.2–7.7 % of all GH-positive cells) in rat pituitary. Thus, we demonstrate that Tpit/F1 has the plasticity to differentiate into one type of hormone-producing cell.

Journal

Cell and Tissue ResearchSpringer Journals

Published: Mar 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off