Cloudlet dynamic server selection policy for mobile task off-loading in mobile cloud computing using soft computing techniques

Cloudlet dynamic server selection policy for mobile task off-loading in mobile cloud computing... Wide acceptance of mobile phones and their resource hungry applications have highlighted resource limitations of mobile devices. In this regard, cloud computing has provided mobile phones with unlimited resources in order to help them overcome their constraints and enable them to support wider range of applications; so, mobile devices can outsource their tasks to public or local clouds. To accommodate to exponential growth of requests, user requests should be distributed to different cloudlets and then transparently and dynamically redirected to the servers according to the latest network and server status. Therefore, finding the best place to off-load is vital and crucial to both functionality and performance of the system. However, accurate and timely parameters of network and servers’ status are improbable to achieve, so the traditional algorithms cannot perform effectively and fully efficient. As a solution in this paper, an adaptive neuro-fuzzy inference system is proposed and trained to assign tasks to the servers efficiently. The trained system is robust to imprecise context information and is tolerable measurement noise and errors. We have considered improving both system performance and user quality of service parameters in this paper. Simulation results demonstrate that, compared with other server selection schemes, the proposed scheme can achieve higher resource utilization (utilization is a percentage of time that a server is busy doing something), provide better user-perceived quality of service, and efficiently deal with network dynamics. Simulation results show that our proposed algorithm excels over the compared works in terms of performance, at the best case about 30% and at the worst case about 8.93%. The Journal of Supercomputing Springer Journals

Cloudlet dynamic server selection policy for mobile task off-loading in mobile cloud computing using soft computing techniques

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Programming Languages, Compilers, Interpreters; Processor Architectures; Computer Science, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial