Cloud service provisioning in two types of DCN with awareness of delay and link failure probability

Cloud service provisioning in two types of DCN with awareness of delay and link failure probability Cloud service based on data center network (DCN) has become an attractive choice for various applications. Traditionally, multiple DCs are distributed at different nodes across a given optical network, and users access DCs through predefined routes (this architecture is named as Multiple Independent DCN, MI-DCN). However, as there exist transmission delay and failure probability on each link, such a network may not be a good choice for the service providers from the perspective of service reliability and cost. Therefore, we propose the idea of regrouping all the racks and distributing each rack group on a special node, where there exists a gateway (this architecture is named as Integrated Distributed DCN, ID-DCN). As each group can provide service independently, by properly grouping and routing, the whole network can work more efficiently with lower cost and higher reliability. In this paper, we study the service provision in the above two types of DCN. With the given failure probability and transmission delay on each link, we aim to minimize the total service cost and design the access routes for the demands originated from each node. To integrate the system cost, we introduce two cost scaling factors for delay and failure probability, which can be flexibly adjusted to control their relative importance (i.e., the weights). Based on mathematical approximation, a novel method is proposed to compute the failure probabilities of individual service paths. This translates our objective function into a linear expression. Then, we formulate two integer linear programs (ILP) to compare the solutions of the two scenarios. Via extensive numerical experiments, the performance of the two schemes is properly verified. Photonic Network Communications Springer Journals

Cloud service provisioning in two types of DCN with awareness of delay and link failure probability

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial