Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea

Cloning of genes by mRNA differential display induced during the hypersensitive reaction of... Soybean (Glycine max[L.] Merr.) cell suspension cultures (cv. Williams 82) inoculated with the pathogenic bacteria Pseudomonas syringae pv. glycinea respond with a hypersensitive reaction (HR) when the bacteria express the avirulence gene avrA. A mRNA differential display was established for this system to allow the identification of genes induced during the HR. Six PCR-fragments (DD1–DD6) from the differential display analysis were identified, which are induced during the HR. Database searches revealed that the fragment DD1 encodes chalcone isomerase and DD2 was identified as ubiquitin. The fragment DD3 shares significant homology to the signalling molecule 14-3-3. The partial DD4 product is homologous to the enhancer of rudimentary from Drosophila and an uncharacterized homologue of it from Arabidopsis. The fragment DD5 is similar to glucose-6-phosphate dehydrogenase which provides NADPH to the cell. The PCR-product DD6 seems to be a new leucine-rich-repeat disease resistance gene from soybean, which is significantly induced during the HR. All of the identified genes are clearly induced during a HR in infected plants of the same cultivar, indicating that results from the cell culture model system can be transferred to intact plants. These studies show that complex mRNA differential display is a powerful tool to identify new induced gene in plant-pathogen interactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea

Loading next page...
 
/lp/springer_journal/cloning-of-genes-by-mrna-differential-display-induced-during-the-At0PyV4djQ
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006036827841
Publisher site
See Article on Publisher Site

Abstract

Soybean (Glycine max[L.] Merr.) cell suspension cultures (cv. Williams 82) inoculated with the pathogenic bacteria Pseudomonas syringae pv. glycinea respond with a hypersensitive reaction (HR) when the bacteria express the avirulence gene avrA. A mRNA differential display was established for this system to allow the identification of genes induced during the HR. Six PCR-fragments (DD1–DD6) from the differential display analysis were identified, which are induced during the HR. Database searches revealed that the fragment DD1 encodes chalcone isomerase and DD2 was identified as ubiquitin. The fragment DD3 shares significant homology to the signalling molecule 14-3-3. The partial DD4 product is homologous to the enhancer of rudimentary from Drosophila and an uncharacterized homologue of it from Arabidopsis. The fragment DD5 is similar to glucose-6-phosphate dehydrogenase which provides NADPH to the cell. The PCR-product DD6 seems to be a new leucine-rich-repeat disease resistance gene from soybean, which is significantly induced during the HR. All of the identified genes are clearly induced during a HR in infected plants of the same cultivar, indicating that results from the cell culture model system can be transferred to intact plants. These studies show that complex mRNA differential display is a powerful tool to identify new induced gene in plant-pathogen interactions.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off