Cloning, Functional Identification and Sequence Analysis of Flavonoid 3′-hydroxylase and Flavonoid 3′,5′-hydroxylase cDNAs Reveals Independent Evolution of Flavonoid 3′,5′-hydroxylase in the Asteraceae Family

Cloning, Functional Identification and Sequence Analysis of Flavonoid 3′-hydroxylase and... Flavonoids are ubiquitous secondary plant metabolites which function as protectants against UV light and pathogens and are involved in the attraction of pollinators as well as seed and fruit dispersers. The hydroxylation pattern of the B-ring of flavonoids is determined by the activity of two members of the vast and versatile cytochrome P450 protein (P450) family, the flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H). Phylogenetic analysis of known sequences of F3′H and F3′5′H indicated that F3′5′H was recruited from F3′H before the divergence of angiosperms and gymnosperms. Seven cDNAs were isolated from species of the Asteraceae family, all of which were predicted to code for F3′Hs based on their sequences. The recombinant proteins of four of the heterologously in yeast expressed cDNAs exhibited the expected F3′H activity but surprisingly, three recombinant proteins showed F3′5′H activity. Phylogenetic analyses indicated the independent evolution of an Asteraceae-specific F3′5′H. Furthermore, sequence analysis of these unusual F3′5′H cDNAs revealed an elevated rate of nonsynonymous substitutions as typically found for duplicated genes acquiring new functions. Since F3′5′H is necessary for the synthesis of 3′,4′,5′-hydroxylated delphinidin-derivatives, which normally provide the basis for purple to blue flower colours, the evolution of an Asteraceae-specific F3′5′H probably reflects the adaptive value of efficient attraction of insect pollinators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning, Functional Identification and Sequence Analysis of Flavonoid 3′-hydroxylase and Flavonoid 3′,5′-hydroxylase cDNAs Reveals Independent Evolution of Flavonoid 3′,5′-hydroxylase in the Asteraceae Family

Loading next page...
 
/lp/springer_journal/cloning-functional-identification-and-sequence-analysis-of-flavonoid-3-xLhXbSUtjK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0012-0
Publisher site
See Article on Publisher Site

Abstract

Flavonoids are ubiquitous secondary plant metabolites which function as protectants against UV light and pathogens and are involved in the attraction of pollinators as well as seed and fruit dispersers. The hydroxylation pattern of the B-ring of flavonoids is determined by the activity of two members of the vast and versatile cytochrome P450 protein (P450) family, the flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H). Phylogenetic analysis of known sequences of F3′H and F3′5′H indicated that F3′5′H was recruited from F3′H before the divergence of angiosperms and gymnosperms. Seven cDNAs were isolated from species of the Asteraceae family, all of which were predicted to code for F3′Hs based on their sequences. The recombinant proteins of four of the heterologously in yeast expressed cDNAs exhibited the expected F3′H activity but surprisingly, three recombinant proteins showed F3′5′H activity. Phylogenetic analyses indicated the independent evolution of an Asteraceae-specific F3′5′H. Furthermore, sequence analysis of these unusual F3′5′H cDNAs revealed an elevated rate of nonsynonymous substitutions as typically found for duplicated genes acquiring new functions. Since F3′5′H is necessary for the synthesis of 3′,4′,5′-hydroxylated delphinidin-derivatives, which normally provide the basis for purple to blue flower colours, the evolution of an Asteraceae-specific F3′5′H probably reflects the adaptive value of efficient attraction of insect pollinators.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 19, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off