Cloning, functional expression and expression studies of the nitrate transporter gene from Chlorella sorokiniana (strain 211-8k)

Cloning, functional expression and expression studies of the nitrate transporter gene from... The nitrate transporter from Chlorella sorokiniana (accession number AY026523) has been cloned by screening a cDNA library based on mRNA isolated after 30 min treatment of Chlorella with 5 mM nitrate and with a RT-PCR product (730 bp) as a probe. The Chlorella sequence has similarity to known nitrate transporters of the NRT2 family (high-affinity nitrate transporters). The cDNA clone was used for functional expression in Xenopus oocytes and a nitrate-dependent current was measured at pH 5.5 but not at pH 7.4. A second algal gene or a second gene product was not needed for functional expression in Xenopus. Inhibitor studies in Chlorella indicated that protein phosphorylation/dephosphorylation is involved in nitrate induction of ChNRT2.1. In addition to nitrate, ChNRT2.1 expression is induced by nitroprusside, a NO donor, and is affected by glucose. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning, functional expression and expression studies of the nitrate transporter gene from Chlorella sorokiniana (strain 211-8k)

Loading next page...
 
/lp/springer_journal/cloning-functional-expression-and-expression-studies-of-the-nitrate-4KNIRiBB8T
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1025024821832
Publisher site
See Article on Publisher Site

Abstract

The nitrate transporter from Chlorella sorokiniana (accession number AY026523) has been cloned by screening a cDNA library based on mRNA isolated after 30 min treatment of Chlorella with 5 mM nitrate and with a RT-PCR product (730 bp) as a probe. The Chlorella sequence has similarity to known nitrate transporters of the NRT2 family (high-affinity nitrate transporters). The cDNA clone was used for functional expression in Xenopus oocytes and a nitrate-dependent current was measured at pH 5.5 but not at pH 7.4. A second algal gene or a second gene product was not needed for functional expression in Xenopus. Inhibitor studies in Chlorella indicated that protein phosphorylation/dephosphorylation is involved in nitrate induction of ChNRT2.1. In addition to nitrate, ChNRT2.1 expression is induced by nitroprusside, a NO donor, and is affected by glucose.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off