Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein

Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding... We have isolated and characterized a cDNA from a strawberry fruit subtractive library that shows homology to class-I low-molecular-weight (LMW) heat-shock protein genes from other higher plants. The strawberry cDNA (clone njjs4) was a 779 bp full-length cDNA with a single open reading frame of 468 bp that is expected to encode a protein of ca. 17.4 kDa with a pI of 6.57. Southern analysis with genomic DNA showed several high-molecular-weight hybridization bands, indicating that the corresponding njjs4 gene is not present as a single copy in the genome. This strawberry gene was not expressed in roots, leaves, flowers and stolons but in fruits at specific stages of elongation and ripening. However, a differential pattern of mRNA expression was detected in the fruit tissues achenes and receptacle. The njjs4 gene expression increased in achenes accompanying the process of seed maturation whereas in the receptacle, a high mRNA expression was detected in the W2 stage, during which most of the metabolic changes leading to the fruit ripening are occurring. Our results clearly show a specific relationship of this njjs4 strawberry gene with the processes of seed maturation and fruit ripening, and strongly support that at least some of the class-I LMW heat-shock protein-like genes have a heat-stress-independent role in plant development, including fruit ripening. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein

Loading next page...
 
/lp/springer_journal/cloning-and-molecular-characterization-of-a-strawberry-fruit-ripening-HPXf8lJGgZ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005994800671
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial