Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens

Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and... Two cultivars of Perilla frutescens, red and green formas, are known to differ in anthocyanin accumulation in leaves and stems. cDNA clones encoding the enzymes involved in anthocyanin biosynthesis, chalcone synthase (CHS), flavanone 3-hydroylase (F3H), dihydroflavonol 4-reductase (DFR), and UDP glucose: flavonoid 3-O-glucosyltransferase (3GT), were isolated from cDNA libraries derived from the leaves of a red forma of P. frutescens by screening with partial fragments amplified by means of polymerase chain reaction (PCR) and heterologous cDNAs as probes. The deduced amino acid sequences of these four genes exhibited 40–90% identity with those reported for the corresponding gene from other unrelated species. Southern blot analysis for these genes and two other structural genes, the leucoanthocyanidin dioxygenase (LDOX, anthocyanidin synthase) and anthocyanin acyltransferase (AAT) genes, indicated that each gene comprises a small multi-gene family. More than three copies of the CHS gene are present, two copies of the other genes being present. The expression of five genes, the exception being the CHS gene, was detected only in red leaves of the red forma of P. frutescens, i.e. not in green leaves of the green forma plant. The CHS gene was expressed in both red and green leaves, but 10-fold more in red leaves than in green leaves. These results suggest that the expression of all structural genes examined is coordinately regulated in a forma-specific manner. Under weak-light conditions, the accumulation of both anthocyanin and mRNAs of biosynthetic enzymes was lower in leaves of the red forma. High-intensity white light coordinately induced the accumulation of transcripts of all six genes examined in the mature leaves of red P. frutescens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens

Loading next page...
 
/lp/springer_journal/cloning-and-molecular-analysis-of-structural-genes-involved-in-lxk6bkG0E0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005959203396
Publisher site
See Article on Publisher Site

Abstract

Two cultivars of Perilla frutescens, red and green formas, are known to differ in anthocyanin accumulation in leaves and stems. cDNA clones encoding the enzymes involved in anthocyanin biosynthesis, chalcone synthase (CHS), flavanone 3-hydroylase (F3H), dihydroflavonol 4-reductase (DFR), and UDP glucose: flavonoid 3-O-glucosyltransferase (3GT), were isolated from cDNA libraries derived from the leaves of a red forma of P. frutescens by screening with partial fragments amplified by means of polymerase chain reaction (PCR) and heterologous cDNAs as probes. The deduced amino acid sequences of these four genes exhibited 40–90% identity with those reported for the corresponding gene from other unrelated species. Southern blot analysis for these genes and two other structural genes, the leucoanthocyanidin dioxygenase (LDOX, anthocyanidin synthase) and anthocyanin acyltransferase (AAT) genes, indicated that each gene comprises a small multi-gene family. More than three copies of the CHS gene are present, two copies of the other genes being present. The expression of five genes, the exception being the CHS gene, was detected only in red leaves of the red forma of P. frutescens, i.e. not in green leaves of the green forma plant. The CHS gene was expressed in both red and green leaves, but 10-fold more in red leaves than in green leaves. These results suggest that the expression of all structural genes examined is coordinately regulated in a forma-specific manner. Under weak-light conditions, the accumulation of both anthocyanin and mRNAs of biosynthetic enzymes was lower in leaves of the red forma. High-intensity white light coordinately induced the accumulation of transcripts of all six genes examined in the mature leaves of red P. frutescens.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off