Cloning and functional expression of two plant thiol methyltransferases: a new class of enzymes involved in the biosynthesis of sulfur volatiles

Cloning and functional expression of two plant thiol methyltransferases: a new class of enzymes... Glucosinolates are defensive compounds found in several plant families. We recently described five distinct isoforms of a novel plant enzyme, thiol methyltransferase (TMT), which methylate the hydrolysis products of glucosinolates to volatile sulfur compounds that have putative anti-insect and anti-pathogen roles. In the work presented here, two cDNAs encoding these enzymes (cTMT1 and cTMT2) were isolated by screening a cabbage cDNA library with an ArabidopsisEST showing high sequence homology to one TMT isoform. The genomic clone of cTMT1 was subsequently amplified by PCR. Both cDNAs encoded polypeptides of identical lengths (227 amino acids) and similar predicted masses (ca. 25 kDa), but differing in 13 residues. The cDNAs contained the typical methyltransferase signatures, but were otherwise distinct from conventionally known N-, O-or S-methyltransferases. A chloride methyl transferase was the only gene with an assigned function that shared significant similarity with the TMT cDNAs. Southern analysis indicated single copy for each TMT gene. The two cDNAs were expressed in Escherichia coli. The substrate range, kinetic properties and molecular sizes of the purified recombinant proteins were comparable to those of the native enzyme. These data, together with the detection of the sequenced amino acid motif of one native TMT peptide in the cDNAs, confirmed that the latter were authentic TMTs. The expression pattern of the TMTs in various cabbage tissues was consistent with their association with glucosinolates. The cloning of this new class of plant genes furnishes crucial molecular tools to understand the role of this metabolic sector in plant defenses against biotic stress. Plant Molecular Biology Springer Journals

Cloning and functional expression of two plant thiol methyltransferases: a new class of enzymes involved in the biosynthesis of sulfur volatiles

Loading next page...
Kluwer Academic Publishers
Copyright © 2002 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial