Cloning and functional characterization of a cation–chloride cotransporter gene OsCCC1

Cloning and functional characterization of a cation–chloride cotransporter gene OsCCC1 Potassium (K+) and chloride (Cl−) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl−, it remains unclear if they actively use K+-coupled Cl− cotransporters (KCC), as used in animals, to transport K+ and Cl−. We have cloned an Oryza sativa cDNA encoding for a member of the cation–Cl− cotransporter (CCC) family. Phylogenetic analysis revealed that plant CCC proteins are highly conserved and that they have greater sequence similarity to the sub-family of animal K+–Cl− cotransporters than to other cation–Cl− cotransporters. Real-time PCR revealed that the O. sativa cDNA, which was named OsCCC1, can be induced by KCl in the shoot and root and that the expression level was higher in the leaf and root tips than in any other part of the rice plant. The OsCCC1 protein was located not only in onion plasma membrane but also in O. sativa plasma membrane. The OsCCC1 gene-silenced plants grow more slowly than wild-type (WT) plants, especially under the KCl treatment regime. After 1 month of KCl treatment, the leaf tips of the gene-silenced lines were necrosed. In addition, seed germination, root length, and fresh and dry weight were distinctly lower in the gene-silenced lines than in WT plants, especially after KCl treatment. Analysis of Na+, K+, and Cl− contents of the gene-silenced lines and WT plants grown under the NaCl and KCl treatment regimes revealed that the former accumulated relatively less K+ and Cl− than the latter but that they did not differ in terms of Na+ contents, suggesting OsCCC1 may be involved in K+ and Cl− transport. Results from different tests indicated that the OsCCC1 plays a significant role in K+ and Cl− homeostasis and rice plant development. Plant Molecular Biology Springer Journals

Cloning and functional characterization of a cation–chloride cotransporter gene OsCCC1

Loading next page...
Springer Netherlands
Copyright © 2011 by Springer Science+Business Media B.V.
Life Sciences; Plant Sciences ; Plant Pathology; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial