Cloning and expression analysis of a CMS-related gene BcCoi1 from Brassica campestris ssp. chinensis

Cloning and expression analysis of a CMS-related gene BcCoi1 from Brassica campestris ssp. chinensis BcCoi1, a cytoplasmic male sterility related gene, which was isolated from flower buds of Brassica campestris ssp. chinensis Makino using the RACE technology, was characterized and submitted to the NCBI GenBank (accession no. GU263836). The gene encodes a 67.78-kD protein containing 16 leucine-rich repeats and an N-terminal F-box motif and is extremely similar to Arabidopsis thaliana Coi1 gene. The Southern blot showed that BcCoi1 belongs to a multigene family. In A. thaliana, the Coi1 gene is involved in jasmonate signaling, and Coi1 mutant displayed male sterility. In this study, qPCR results demonstrated that BcCoi1 was accumulated in stamens and was significantly higher expressed in flower organs of the maintainer line than in the CMS one. At the microsporocyte development stage, the gene was expressed at a significantly lower extent in the CMS line than in the maintainer line. This expression profile presumes that BcCoi1 plays a role in early microspore development in non-heading Chinese cabbage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Cloning and expression analysis of a CMS-related gene BcCoi1 from Brassica campestris ssp. chinensis

Loading next page...
 
/lp/springer_journal/cloning-and-expression-analysis-of-a-cms-related-gene-bccoi1-from-vJOl2pK4dw
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712060222
Publisher site
See Article on Publisher Site

Abstract

BcCoi1, a cytoplasmic male sterility related gene, which was isolated from flower buds of Brassica campestris ssp. chinensis Makino using the RACE technology, was characterized and submitted to the NCBI GenBank (accession no. GU263836). The gene encodes a 67.78-kD protein containing 16 leucine-rich repeats and an N-terminal F-box motif and is extremely similar to Arabidopsis thaliana Coi1 gene. The Southern blot showed that BcCoi1 belongs to a multigene family. In A. thaliana, the Coi1 gene is involved in jasmonate signaling, and Coi1 mutant displayed male sterility. In this study, qPCR results demonstrated that BcCoi1 was accumulated in stamens and was significantly higher expressed in flower organs of the maintainer line than in the CMS one. At the microsporocyte development stage, the gene was expressed at a significantly lower extent in the CMS line than in the maintainer line. This expression profile presumes that BcCoi1 plays a role in early microspore development in non-heading Chinese cabbage.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off