Cloning and characterization of tomato leaf senescence-related cDNAs

Cloning and characterization of tomato leaf senescence-related cDNAs Senescence-related cDNA clones designated SENU1, 4, 5 (senescence up-regulated) and SEND32, 33, 34, 35 and 36 (senescence down-regulated) isolated from a tomato leaf cDNA library [9] were characterized. Southern analysis showed that SEND32 is encoded by a single-copy gene while SEND33, 34, 35, 36 and SENU1 and SENU5 are members of small gene families. DNA and protein database searches revealed that SEND32, SEND35, SENU1 and SENU5 are novel cDNAs of unknown function. SEND33 encodes ferredoxin, SEND34 encodes a photosystem II 10 kDa polypeptide and SEND36 encodes catalase. The SENU4 sequence is identical to the P6 tomato protein previously reported to be pathogenesis-related [46]. The mRNA levels of SENU1, 4 and 5 increased during leaf senescence and SENU1 and SENU5 were also expressed at high levels during leaf development and in other plant organs. The SENU4 mRNA was associated more specifically with leaf senescence, although low expression was also detected in green fruit. The mRNAs for all SEND clones decreased during tomato leaf development and senescence and all except SEND32 were expressed at low levels in other plant organs. The accumulation of mRNA homologous to SENU4 and the decrease in abundance of SEND32 provide good molecular markers for leaf senescence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning and characterization of tomato leaf senescence-related cDNAs

Loading next page...
1
 
/lp/springer_journal/cloning-and-characterization-of-tomato-leaf-senescence-related-cdnas-eDe0AMOME2
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005746831643
Publisher site
See Article on Publisher Site

Abstract

Senescence-related cDNA clones designated SENU1, 4, 5 (senescence up-regulated) and SEND32, 33, 34, 35 and 36 (senescence down-regulated) isolated from a tomato leaf cDNA library [9] were characterized. Southern analysis showed that SEND32 is encoded by a single-copy gene while SEND33, 34, 35, 36 and SENU1 and SENU5 are members of small gene families. DNA and protein database searches revealed that SEND32, SEND35, SENU1 and SENU5 are novel cDNAs of unknown function. SEND33 encodes ferredoxin, SEND34 encodes a photosystem II 10 kDa polypeptide and SEND36 encodes catalase. The SENU4 sequence is identical to the P6 tomato protein previously reported to be pathogenesis-related [46]. The mRNA levels of SENU1, 4 and 5 increased during leaf senescence and SENU1 and SENU5 were also expressed at high levels during leaf development and in other plant organs. The SENU4 mRNA was associated more specifically with leaf senescence, although low expression was also detected in green fruit. The mRNAs for all SEND clones decreased during tomato leaf development and senescence and all except SEND32 were expressed at low levels in other plant organs. The accumulation of mRNA homologous to SENU4 and the decrease in abundance of SEND32 provide good molecular markers for leaf senescence.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off