Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress

Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum... A second glutathione reductase (GR) cDNA has been cloned and sequenced from pea (Pisum sativum L. cv. Birte). This new GR cDNA (GOR2) does not encode a preprotein with a transit peptide and therefore is most likely to represent a cytosolic GR. It is significantly different at the DNA level from the previously cloned chloroplastidial/mitochondrial pea GR (GOR1), but retains the features characteristic of GRs from all sources and has GR activity when expressed in Escherichia coli. GOR2 maps to linkage group 6 on the pea genome map and it seems likely that this is the only locus for this gene. In contrast to GOR1, transcript levels of GOR2 increase in the recovery (post-stress) phases of both drought and chilling by about ten- and three-fold respectively. GOR2 therefore may play a role in the restoration of the post-stress redox state of the cytosolic glutathione pool. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress

Loading next page...
 
/lp/springer_journal/cloning-and-characterisation-of-a-cytosolic-glutathione-reductase-cdna-RPvPgtxo61
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005858120232
Publisher site
See Article on Publisher Site

Abstract

A second glutathione reductase (GR) cDNA has been cloned and sequenced from pea (Pisum sativum L. cv. Birte). This new GR cDNA (GOR2) does not encode a preprotein with a transit peptide and therefore is most likely to represent a cytosolic GR. It is significantly different at the DNA level from the previously cloned chloroplastidial/mitochondrial pea GR (GOR1), but retains the features characteristic of GRs from all sources and has GR activity when expressed in Escherichia coli. GOR2 maps to linkage group 6 on the pea genome map and it seems likely that this is the only locus for this gene. In contrast to GOR1, transcript levels of GOR2 increase in the recovery (post-stress) phases of both drought and chilling by about ten- and three-fold respectively. GOR2 therefore may play a role in the restoration of the post-stress redox state of the cytosolic glutathione pool.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off