Cloning and analysis of a novel conserved membrane zinc-metalloprotease family from Solanum surattense

Cloning and analysis of a novel conserved membrane zinc-metalloprotease family from Solanum... Peptidases occur naturally in all organisms and their genes comprise 1–5% of the total number of genes. Genetic, biochemical, and molecular approaches used in recent years led to the identification and characterization of several plant organelle proteases, all of them being homologous to bacterial proteases best characterized in Escherichia coli. Here we report isolating and characterizing three novel genes, namely Sszn-mp1, Sszn-mp2, and SsZn-mp3 from Solanum surattense. To identify the subcellular location, structures, and functions of these three genes, integrated genomic approaches of data mining, expression profiling, and bioinformatic predictions were used. Sszn-mp is found to be constitutively expressed in tissues and regulated by various stimuli. Analysis of eight zinc-metalloproteases (Zn-MPs) deduced or assembled from Arabidopsis thaliana, tomato, potato, cotton, barley, sugarcane, and rice and four Zn-MPs from cyanobacteria (blue-green algae) in the GenBank database reveals that these proteins belong to a novel conserved membrane zinc-metalloprotease family. The plant Zn-MP members share more than 62% overall identity with SsZn-MP3, whereas four putative ATP-dependent zinc-proteases of cyanobacteria have low identity with SsZn-MP3 and their N-termini are about 110 amino acids shorter than those of plant Zn-MPs. The Zn-MP homologous sequences are found neither in other eukaryotic nor prokaryotic databases, suggesting that this family is specific to plants and cyanobacteria. The plant Zn-MP genes encoding membrane proteins are potentially targeted to chloroplast and plasma membranes, and the bacterial Zn-MPs are targeted to the cytoplasmic membrane, and their N-terminal targeting peptides are cleaved off for targeting the mature proteins to their subcellular compartments. The Zn-MP proteins contain a conserved zinc-binding site (HEAGHX19E/DX46∼48EX7E), a potential G-protein coupled receptors family 1 signature, and a triplet motif (N-R/K-F) in plant Zn-MPs, a D/E-R-Y motif in the four bacterial Zn-MPs, suggesting that the different mature forms of Zn-MPs may function as proteases and/or signal receptors. Russian Journal of Plant Physiology Springer Journals

Cloning and analysis of a novel conserved membrane zinc-metalloprotease family from Solanum surattense

Loading next page...
Copyright © 2007 by Pleiades Publishing, Ltd.
Life Sciences; Plant Sciences; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial