Classifying readmissions to a cardiac intensive care unit

Classifying readmissions to a cardiac intensive care unit Research has associated intensive care unit (ICU) readmissions with increased risk of morbidity and mortality. Readmitted patients are also exposed to complications as they are transferred between hospital units. Moreover, due to their unexpected nature, readmissions increase ICU costs and the complexity of managing ICUs. Existing studies on ICU readmissions have mainly used logistic regression for identifying patients who are more likely to be readmitted. However, such studies do not account for the imbalanced nature of the data where the class of interest (readmitted patients) is the minority group. This paper empirically compares three approaches for handling the imbalanced ICU readmissions data: misclassification cost ratio, synthetic minority oversampling technique (SMOTE), and random under-sampling. We used three classification techniques for identifying patients who are more likely to be readmitted to the ICU within the same hospital stay: support vector machines, C5.0, and logistic regression. We evaluated the classification performance of the three methods using recall, specificity, accuracy, F-measure, G-mean, confusion entropy, and area under the receiver operating characteristic curve. Our results showed that SMOTE is the best approach for addressing the imbalanced nature of the data. The sensitivity analysis identified prolonged ventilation, renal failure, and pneumonia as the top three predictors of ICU readmissions. Our findings can be used to develop a decision support tool to help ICU clinicians and administrators in identifying patients who are more likely to be readmitted and hence provide the patients with the appropriate care to minimize their risk of readmission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Operations Research Springer Journals

Classifying readmissions to a cardiac intensive care unit

Loading next page...
 
/lp/springer_journal/classifying-readmissions-to-a-cardiac-intensive-care-unit-V0Albo4Mjt
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Combinatorics; Theory of Computation
ISSN
0254-5330
eISSN
1572-9338
D.O.I.
10.1007/s10479-016-2350-x
Publisher site
See Article on Publisher Site

Abstract

Research has associated intensive care unit (ICU) readmissions with increased risk of morbidity and mortality. Readmitted patients are also exposed to complications as they are transferred between hospital units. Moreover, due to their unexpected nature, readmissions increase ICU costs and the complexity of managing ICUs. Existing studies on ICU readmissions have mainly used logistic regression for identifying patients who are more likely to be readmitted. However, such studies do not account for the imbalanced nature of the data where the class of interest (readmitted patients) is the minority group. This paper empirically compares three approaches for handling the imbalanced ICU readmissions data: misclassification cost ratio, synthetic minority oversampling technique (SMOTE), and random under-sampling. We used three classification techniques for identifying patients who are more likely to be readmitted to the ICU within the same hospital stay: support vector machines, C5.0, and logistic regression. We evaluated the classification performance of the three methods using recall, specificity, accuracy, F-measure, G-mean, confusion entropy, and area under the receiver operating characteristic curve. Our results showed that SMOTE is the best approach for addressing the imbalanced nature of the data. The sensitivity analysis identified prolonged ventilation, renal failure, and pneumonia as the top three predictors of ICU readmissions. Our findings can be used to develop a decision support tool to help ICU clinicians and administrators in identifying patients who are more likely to be readmitted and hence provide the patients with the appropriate care to minimize their risk of readmission.

Journal

Annals of Operations ResearchSpringer Journals

Published: Nov 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off