Classification of two-qubit states

Classification of two-qubit states Verstraete, Dehaene and DeMoor showed that each of the two-qubit states can be generated from one of two canonical families of two-qubit states by means of transformations preserving the tensor structure of the state space. Precisely, each of such states can be generated from a three-parameter family of Bell-diagonal states or from three-parameter rank-deficient states. In this paper, we show that this classification of two-qubit states can be refined. In particular, we show that the latter canonical family of states can be reduced to three fixed states and a two-parameter family of two-qubit states. For this family of states, we provide a simple parametrization that guarantees positive semidefiniteness of the states and enables easier calculation of the Wootters concurrence and quantum discord. Moreover, we present a new general parametrization of all two-qubit states generated from the canonical families of states using sets of (pseudo)orthogonal four-vectors (frames). An advantage of the presented approach lies in the fact that the standard conditions for positive semidefiniteness of states are equivalent to (pseudo)orthogonality conditions for four-vectors serving as parameters (and appropriate conditions for parameters of the corresponding canonical family of states). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals
Loading next page...
 
/lp/springer_journal/classification-of-two-qubit-states-HgKQjZsKBM
Publisher
Springer US
Copyright
Copyright © 2015 by The Author(s)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1121-y
Publisher site
See Article on Publisher Site

Abstract

Verstraete, Dehaene and DeMoor showed that each of the two-qubit states can be generated from one of two canonical families of two-qubit states by means of transformations preserving the tensor structure of the state space. Precisely, each of such states can be generated from a three-parameter family of Bell-diagonal states or from three-parameter rank-deficient states. In this paper, we show that this classification of two-qubit states can be refined. In particular, we show that the latter canonical family of states can be reduced to three fixed states and a two-parameter family of two-qubit states. For this family of states, we provide a simple parametrization that guarantees positive semidefiniteness of the states and enables easier calculation of the Wootters concurrence and quantum discord. Moreover, we present a new general parametrization of all two-qubit states generated from the canonical families of states using sets of (pseudo)orthogonal four-vectors (frames). An advantage of the presented approach lies in the fact that the standard conditions for positive semidefiniteness of states are equivalent to (pseudo)orthogonality conditions for four-vectors serving as parameters (and appropriate conditions for parameters of the corresponding canonical family of states).

Journal

Quantum Information ProcessingSpringer Journals

Published: Sep 18, 2015

References

  • Quantum entanglement
    Horodecki, R; Horodecki, P; Horodecki, M; Horodecki, K

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off