Classical communication and non-classical fidelity of quantum teleportation

Classical communication and non-classical fidelity of quantum teleportation In quantum teleportation, the role of entanglement has been much discussed. It is known that entanglement is necessary for achieving non-classical teleportation fidelity. Here we focus on the amount of classical communication that is necessary to obtain non-classical fidelity in teleportation. We quantify the amount of classical communication that is sufficient for achieving non-classical fidelity for two independent 1-bit and single 2-bits noisy classical channels. It is shown that on average 0.208 bits of classical communication is sufficient to get non-classical fidelity. We also find the necessary amount of classical communication in case of isotropic transformation. Finally we study how the amount of sufficient classical communication increases with weakening of entanglement used in the teleportation process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Classical communication and non-classical fidelity of quantum teleportation

Loading next page...
 
/lp/springer_journal/classical-communication-and-non-classical-fidelity-of-quantum-wHrWpo80av
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0619-4
Publisher site
See Article on Publisher Site

Abstract

In quantum teleportation, the role of entanglement has been much discussed. It is known that entanglement is necessary for achieving non-classical teleportation fidelity. Here we focus on the amount of classical communication that is necessary to obtain non-classical fidelity in teleportation. We quantify the amount of classical communication that is sufficient for achieving non-classical fidelity for two independent 1-bit and single 2-bits noisy classical channels. It is shown that on average 0.208 bits of classical communication is sufficient to get non-classical fidelity. We also find the necessary amount of classical communication in case of isotropic transformation. Finally we study how the amount of sufficient classical communication increases with weakening of entanglement used in the teleportation process.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 10, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off