Citrus disease recognition based on weighted scalable vocabulary tree

Citrus disease recognition based on weighted scalable vocabulary tree Citrus Huanglongbing (HLB) is a destructive disease in citrus production that causes huge economic damage to citrus producers and related industries in the world. Early and accurate detection of HLB is a critical management step to control the spread of this disease. However, existing HLB detection methods cannot be widely adopted in citrus production due to long-time and high-cost detection period in specific laboratory environments. In view of this, a fast-response and low-cost computer vision technique is investigated for diagnosing HLB in citrus leaves. Specifically, the Gaussian mixture density (GMD) is performed to extract the leaf object from the citrus image, followed by the feature extraction and recognition of the existence of HLB in the leaf based on scalable vocabulary tree. A citrus leaf image dataset is constructed, and the experimental results show that the proposed HLB recognition method with GMD object extraction performs 95–100 % accuracy within 1 s. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Citrus disease recognition based on weighted scalable vocabulary tree

Loading next page...
 
/lp/springer_journal/citrus-disease-recognition-based-on-weighted-scalable-vocabulary-tree-NQV2E9ns57
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-013-9329-2
Publisher site
See Article on Publisher Site

Abstract

Citrus Huanglongbing (HLB) is a destructive disease in citrus production that causes huge economic damage to citrus producers and related industries in the world. Early and accurate detection of HLB is a critical management step to control the spread of this disease. However, existing HLB detection methods cannot be widely adopted in citrus production due to long-time and high-cost detection period in specific laboratory environments. In view of this, a fast-response and low-cost computer vision technique is investigated for diagnosing HLB in citrus leaves. Specifically, the Gaussian mixture density (GMD) is performed to extract the leaf object from the citrus image, followed by the feature extraction and recognition of the existence of HLB in the leaf based on scalable vocabulary tree. A citrus leaf image dataset is constructed, and the experimental results show that the proposed HLB recognition method with GMD object extraction performs 95–100 % accuracy within 1 s.

Journal

Precision AgricultureSpringer Journals

Published: Jan 29, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off