Circulatory system in chicken skeletal muscle in the second half of embryogenesis: Shape, blood flow, and vascular reactivity

Circulatory system in chicken skeletal muscle in the second half of embryogenesis: Shape, blood... A restructuring of the capillary bed—from the embryonic structure with a three-dimensional network of wide and long protocapillaries to the mature structure with high density of thin and short capillaries along the fibers—has been demonstrated in the chick skeletal muscle on embryonic days 10–19 by morphometric analysis. In this case, the specific blood flow and capillary luminal area per cm3 of the muscle remained unaltered, while the blood volume in it significantly dropped. The response of muscle circulation to nitroprusside (increase) and noradrenaline (decrease) appeared in 19-day-old embryos, but this response could develop only under conditions of initially low or high blood flow, respectively. We propose that the arterial trunk lumen area to the total capillary lumen area remains constant as the intraorganic circulation is formed, which provides for the required linear blood velocity in capillaries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Circulatory system in chicken skeletal muscle in the second half of embryogenesis: Shape, blood flow, and vascular reactivity

Loading next page...
 
/lp/springer_journal/circulatory-system-in-chicken-skeletal-muscle-in-the-second-half-of-0KSHyVIkFu
Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360409020052
Publisher site
See Article on Publisher Site

Abstract

A restructuring of the capillary bed—from the embryonic structure with a three-dimensional network of wide and long protocapillaries to the mature structure with high density of thin and short capillaries along the fibers—has been demonstrated in the chick skeletal muscle on embryonic days 10–19 by morphometric analysis. In this case, the specific blood flow and capillary luminal area per cm3 of the muscle remained unaltered, while the blood volume in it significantly dropped. The response of muscle circulation to nitroprusside (increase) and noradrenaline (decrease) appeared in 19-day-old embryos, but this response could develop only under conditions of initially low or high blood flow, respectively. We propose that the arterial trunk lumen area to the total capillary lumen area remains constant as the intraorganic circulation is formed, which provides for the required linear blood velocity in capillaries.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Apr 6, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off