Chromosome Maps of Trilliaceae: II. A Study of the Genome Composition in Polyploid Species of the Genus Trillium by Fluorescence Nucleotide Base-Specific Staining of Heterochromatic Chromosome Regions

Chromosome Maps of Trilliaceae: II. A Study of the Genome Composition in Polyploid Species of the... Chromosome banding with nucleotide base-specific fluorochromes chromomycin A3 (CMA) and Hoechst 33258 (H33258) was used to study the karyotypes and to construct cytological maps for diploidTrillium camschatcense(2n = 10), tetraploid T. tschonoskii(2n = 20), hexaploidT. rhombifolium (2n = 30), and a triploid T. camschatcense × T. tschonoskii hybrid (T. × hagae, 2n = 15). With H33258, species- and genome-specific patterns with numerous AT-rich heterochromatin bands were obtained for each of the four forms; CMA revealed a few small, mostly telomeric GC-rich bands. In T. tschonoskii, the two subgenomes were similar to each other and differed from the T. camschatcense genome; on this evidence, the species was considered to be a segmental allotetraploid. InT. ×hagae, one T. camschatcense and both T. tschonoskii subgenomes were identified. The subgenomes of T. rhombifoliumonly partly corresponded to the T. camschatcense and T. tschonoskii genomes, in contrast to the morphologically identical Japanese species T. hagae. This was assumed to indicate that allohexaploids T. rhombifolium and T. hagae originated independently at different times; i.e., their origin is polyphyletic. Based on the chromosome maps, a new nomenclature was proposed for theTrillium genomes examined: K1K1 for T. camschatcense,T1T1T2T2 for T. tschonoskii,K1T1T2 for T. × hagae, and K1RK1RT1RT1RT2RT2R for T. rhombifolium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Chromosome Maps of Trilliaceae: II. A Study of the Genome Composition in Polyploid Species of the Genus Trillium by Fluorescence Nucleotide Base-Specific Staining of Heterochromatic Chromosome Regions

Loading next page...
 
/lp/springer_journal/chromosome-maps-of-trilliaceae-ii-a-study-of-the-genome-composition-in-USyZEds08s
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000039722.20093.bd
Publisher site
See Article on Publisher Site

Abstract

Chromosome banding with nucleotide base-specific fluorochromes chromomycin A3 (CMA) and Hoechst 33258 (H33258) was used to study the karyotypes and to construct cytological maps for diploidTrillium camschatcense(2n = 10), tetraploid T. tschonoskii(2n = 20), hexaploidT. rhombifolium (2n = 30), and a triploid T. camschatcense × T. tschonoskii hybrid (T. × hagae, 2n = 15). With H33258, species- and genome-specific patterns with numerous AT-rich heterochromatin bands were obtained for each of the four forms; CMA revealed a few small, mostly telomeric GC-rich bands. In T. tschonoskii, the two subgenomes were similar to each other and differed from the T. camschatcense genome; on this evidence, the species was considered to be a segmental allotetraploid. InT. ×hagae, one T. camschatcense and both T. tschonoskii subgenomes were identified. The subgenomes of T. rhombifoliumonly partly corresponded to the T. camschatcense and T. tschonoskii genomes, in contrast to the morphologically identical Japanese species T. hagae. This was assumed to indicate that allohexaploids T. rhombifolium and T. hagae originated independently at different times; i.e., their origin is polyphyletic. Based on the chromosome maps, a new nomenclature was proposed for theTrillium genomes examined: K1K1 for T. camschatcense,T1T1T2T2 for T. tschonoskii,K1T1T2 for T. × hagae, and K1RK1RT1RT1RT2RT2R for T. rhombifolium.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off