Chromophores from hexeneuronic acids: identification of HexA-derived chromophores

Chromophores from hexeneuronic acids: identification of HexA-derived chromophores Hexeneuronic acids (HexA) have long been known as triggers for discoloration processes in glucuronoxylan-containing cellulosic pulps. They are formed under the conditions of pulping from 4-O-methylglucuronic acid residues, and are removed in an “A stage” along the bleaching sequences, which mainly comprises acidic washing treatments. The chemical structures of HexA-derived chromophoric compounds 4–8, which make up 90% of the HexA-derived chromophores, are reported here for the first time. The compounds are ladder-type, mixed quinoid-aromatic oligomers of the bis(furano)-[1,4]benzoquinone and bis(benzofurano)-[1,4]benzoquinone type. The same chromophoric compounds are generated independently of the starting material, which can be either a) HexA in pulp, b) the HexA model compound methyl 1-13C-4-deoxy-β-L-threo-hex-4-enopyranosiduronic acid (1) or c) a mixture of the primary degradation intermediates of 1, namely 5-formyl-furancarboxylic acid (2) and 2-furancarboxylic acid (3). Isotopic labeling (13C) in combination with NMR spectroscopy and mass spectrometry served for structure elucidation, and final confirmation was provided by X-ray structure analysis. 13C-Isotopic labeling was also used to establish the formation mechanisms, showing all the compounds to be composed of condensed, but otherwise largely intact, 2-carbonylfuran and 2-carbonylfuran-5-carboxylic acid moieties. These results disprove the frequent assumption that HexA-derived or furfural-derived chromophores are linear furanoid polymers, and might have a direct bearing on structure elucidation studies of “humins”, which are formed as dark-colored byproducts in depolymerization of pentosans and hexosans in different biorefinery scenarios. Cellulose Springer Journals

Chromophores from hexeneuronic acids: identification of HexA-derived chromophores

Loading next page...
Springer Netherlands
Copyright © 2017 by The Author(s)
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial