Chromophores from hexeneuronic acids: chemical behavior under peroxide bleaching conditions

Chromophores from hexeneuronic acids: chemical behavior under peroxide bleaching conditions Hexeneuronic acids (HexA) are a major cause of discoloration (yellowing/brightness reversion) in pulps from xylan-containing wood, being generated from the xylan’s 4-O-methylglucuronic acid residues. The HexA-derived chromophores, whose identification and structure confirmation have been described in the previous part of this series (Rosenau et al. in Cellulose, 2017), were subject to conditions of peroxide bleaching, i.e. treatment with hydrogen peroxide in alkaline medium. These chromophores, ladder-type oligomers of mixed aromatic-quinoid and mixed furanoid-benzoid character, are degraded relatively quickly to one major product, 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ), and a minor component, 2,5-dihydroxyacetophenone (DHA). These two compounds, which have already been identified as two of the three key chromophores (besides 5,8-dihydroxy-[1,4]-naphthoquinone, DHNQ) in aged cellulosics, are potent chromophores themselves and are subsequently more slowly degraded to non-colored degradation products, according to pathways already described in previous parts of this series. The occurrence of DHBQ and DHA in the bleaching treatment of the HexA-derived chromophores establishes the link between HexA chemistry and the key chromophore classes of residual chromophores found in aged cellulosic materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellulose Springer Journals

Chromophores from hexeneuronic acids: chemical behavior under peroxide bleaching conditions

Loading next page...
 
/lp/springer_journal/chromophores-from-hexeneuronic-acids-chemical-behavior-under-peroxide-7L7Uhlj0Wc
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by The Author(s)
Subject
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
ISSN
0969-0239
eISSN
1572-882X
D.O.I.
10.1007/s10570-017-1398-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial