Chromium removal technologies

Chromium removal technologies Chromium can exist in different oxidation states (e.g. 0, III, VI). Chromium can be both beneficial and toxic to animals and humans depending on its oxidation state and concentration. At low concentration, Cr(III) is essential for animal and human health. Chromium(VI) compounds are highly soluble, mobile and bioavailable compared to trivalent chromium. Chromium(VI) is dangerous for humans due to its toxicity and carcinogenic properties. The presence of hexavalent chromium in waste water is a potential hazard to aquatic animals and humans. Various methods are adopted for the removal of hexavalent chromium from industrial effluents. Among these different techniques, biosorption is the most promising one. In this process, the various components present in biomaterial reduce the toxic hexavalent chromium to non-toxic trivalent chromium. Algae, fungi and bacteria have biosorption properties, and cell walls are responsible for biosorption of dead biomaterial. But this process removes chromium from waste water very slowly. So for chemical modification of biosorbents, optimization of biosorption parameters is required to increase the effectiveness of this process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals
Loading next page...
 
/lp/springer_journal/chromium-removal-technologies-vPFIA6DfuZ
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0779-3
Publisher site
See Article on Publisher Site

Abstract

Chromium can exist in different oxidation states (e.g. 0, III, VI). Chromium can be both beneficial and toxic to animals and humans depending on its oxidation state and concentration. At low concentration, Cr(III) is essential for animal and human health. Chromium(VI) compounds are highly soluble, mobile and bioavailable compared to trivalent chromium. Chromium(VI) is dangerous for humans due to its toxicity and carcinogenic properties. The presence of hexavalent chromium in waste water is a potential hazard to aquatic animals and humans. Various methods are adopted for the removal of hexavalent chromium from industrial effluents. Among these different techniques, biosorption is the most promising one. In this process, the various components present in biomaterial reduce the toxic hexavalent chromium to non-toxic trivalent chromium. Algae, fungi and bacteria have biosorption properties, and cell walls are responsible for biosorption of dead biomaterial. But this process removes chromium from waste water very slowly. So for chemical modification of biosorbents, optimization of biosorption parameters is required to increase the effectiveness of this process.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 7, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off