Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodelling in differentiating human spermatids

Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodelling in differentiating... Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This “elementary” fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30–40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called “immature chromatin,” which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodelling in differentiating human spermatids

Loading next page...
 
/lp/springer_journal/chromatin-folding-in-human-spermatozoa-i-dynamics-of-chromatin-bfZccAfN13
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360411050031
Publisher site
See Article on Publisher Site

Abstract

Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This “elementary” fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30–40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called “immature chromatin,” which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Mar 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off