Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes

Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes High-mobility-group (HMG) proteins are small and relatively abundant chromatin-associated proteins, which act as architectural factors. In plants, two groups of chromosomal HMG proteins have been identified, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain. The HMGA proteins are structurally flexible and bind A/T-rich DNA stretches. By orchestrating multiple protein-protein and protein-DNA interactions, they assist the formation of higher-order transcription factor complexes, regulating gene expression. The HMGB proteins bind DNA non-sequence-specifically, but specifically recognise DNA structures. Due to their remarkable DNA bending activity, they can enhance the structural flexibility of DNA, facilitating the assembly of nucleoprotein structures that control various DNA-dependent processes such as transcription and recombination. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes

Loading next page...
1
 
/lp/springer_journal/chromatin-associated-hmga-and-hmgb-proteins-versatile-co-regulators-of-SDiat8w9Od
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000007002.99408.ba
Publisher site
See Article on Publisher Site

Abstract

High-mobility-group (HMG) proteins are small and relatively abundant chromatin-associated proteins, which act as architectural factors. In plants, two groups of chromosomal HMG proteins have been identified, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain. The HMGA proteins are structurally flexible and bind A/T-rich DNA stretches. By orchestrating multiple protein-protein and protein-DNA interactions, they assist the formation of higher-order transcription factor complexes, regulating gene expression. The HMGB proteins bind DNA non-sequence-specifically, but specifically recognise DNA structures. Due to their remarkable DNA bending activity, they can enhance the structural flexibility of DNA, facilitating the assembly of nucleoprotein structures that control various DNA-dependent processes such as transcription and recombination.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off