Choline Modulates Cardiac Membrane Repolarization by Activating an M3 Muscarinic Receptor and its Coupled K+ Channel

Choline Modulates Cardiac Membrane Repolarization by Activating an M3 Muscarinic Receptor and its... Choline is a necessary substrate of the lipid membrane and for acetylcholine synthesis. Accumulating evidence indicates that besides being a structural component, choline is also a functional modulator of the membrane. It has been shown to be a muscarinic acetylcholine receptor (mAChR) agonist and can induce a novel K+ current in cardiac cells. However, the potential role of choline in modulating cardiac functions remained unstudied despite that mAChRs are known to be important in regulating heart functions. With microelectrode techniques, we found that choline produced concentration-dependent (0.1∼10 mm) decreases in sinus rhythm and action potential duration in isolated guinea pig atria. The effects were reversed by 2 nm 4DAMP (an M3-selective antagonist). Whole-cell patch-clamp recordings in dispersed myocytes from guinea pig and canine atria revealed that choline is able to induce a K+ current with delayed rectifying properties. The choline-induced current was suppressed by low concentrations of 4DAMP (2∼10 nm). Antagonists toward other subtypes (M1, M2 or M4) all failed to alter the current. The affinity of choline (K d ) at mAChRs derived from displacement binding of [3H]-NMS in the homogenates from dog atria was 0.9 mm, consistent with the concentration needed for the current induction and for the HR and APD modulation. Our data indicate that choline modulates the cellular electrical properties of the hearts, likely by activating a K+ current via stimulation of M3 receptors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Choline Modulates Cardiac Membrane Repolarization by Activating an M3 Muscarinic Receptor and its Coupled K+ Channel

Loading next page...
 
/lp/springer_journal/choline-modulates-cardiac-membrane-repolarization-by-activating-an-m3-eJBku02M3y
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/PL00005901
Publisher site
See Article on Publisher Site

Abstract

Choline is a necessary substrate of the lipid membrane and for acetylcholine synthesis. Accumulating evidence indicates that besides being a structural component, choline is also a functional modulator of the membrane. It has been shown to be a muscarinic acetylcholine receptor (mAChR) agonist and can induce a novel K+ current in cardiac cells. However, the potential role of choline in modulating cardiac functions remained unstudied despite that mAChRs are known to be important in regulating heart functions. With microelectrode techniques, we found that choline produced concentration-dependent (0.1∼10 mm) decreases in sinus rhythm and action potential duration in isolated guinea pig atria. The effects were reversed by 2 nm 4DAMP (an M3-selective antagonist). Whole-cell patch-clamp recordings in dispersed myocytes from guinea pig and canine atria revealed that choline is able to induce a K+ current with delayed rectifying properties. The choline-induced current was suppressed by low concentrations of 4DAMP (2∼10 nm). Antagonists toward other subtypes (M1, M2 or M4) all failed to alter the current. The affinity of choline (K d ) at mAChRs derived from displacement binding of [3H]-NMS in the homogenates from dog atria was 0.9 mm, consistent with the concentration needed for the current induction and for the HR and APD modulation. Our data indicate that choline modulates the cellular electrical properties of the hearts, likely by activating a K+ current via stimulation of M3 receptors.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off