Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis

Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of... Plant isoprenoids are derived from two independent pathways, the cytosolic mevalonate pathway and the plastid methylerythritol 4-phosphate (MEP) pathway. We used green fluorescent fusion protein assays to demonstrate that the Arabidopsis MEP pathway enzymes are localized to the chloroplast. We have also characterized three Arabidopsis albino mutants, ispD-1, ispD-2 and ispE-1, which have T-DNA insertions in the IspD and IspE genes of the MEP pathway. Levels of photosynthetic pigments are almost undetectable in these albino mutants. Instead of thylakoids, the ispD and ispE mutant chloroplasts are filled with large vesicles. Impairments in chloroplast development and functions may signal changes in the expression of nuclear, chloroplast and mitochondrial genes. We used northern blot analysis to examine the expression of photosynthetic and respiratory genes in the ispD and ispE albino mutants. Steady-state mRNA levels of nucleus- and chloroplast-encoded photosynthetic genes are significantly decreased in the albino mutants. In contrast, transcript levels of nuclear and mitochondrial genes encoding subunits of the mitochondrial electron transport chain are increased or not affected in these mutants. Genomic Southern blot analysis revealed that the DNA amounts of mitochondrial genes are not enhanced in the ispD and ispE albino mutants. These results support the notion that the functional state of chloroplasts may affect the expression of nuclear and mitochondrial genes. The up-regulation of mitochondrial genes in the albino mutants is not caused by changes of mitochondrial DNA copy number in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis

Loading next page...
 
/lp/springer_journal/chloroplast-localization-of-methylerythritol-4-phosphate-pathway-zAylLCIlVx
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9297-5
Publisher site
See Article on Publisher Site

Abstract

Plant isoprenoids are derived from two independent pathways, the cytosolic mevalonate pathway and the plastid methylerythritol 4-phosphate (MEP) pathway. We used green fluorescent fusion protein assays to demonstrate that the Arabidopsis MEP pathway enzymes are localized to the chloroplast. We have also characterized three Arabidopsis albino mutants, ispD-1, ispD-2 and ispE-1, which have T-DNA insertions in the IspD and IspE genes of the MEP pathway. Levels of photosynthetic pigments are almost undetectable in these albino mutants. Instead of thylakoids, the ispD and ispE mutant chloroplasts are filled with large vesicles. Impairments in chloroplast development and functions may signal changes in the expression of nuclear, chloroplast and mitochondrial genes. We used northern blot analysis to examine the expression of photosynthetic and respiratory genes in the ispD and ispE albino mutants. Steady-state mRNA levels of nucleus- and chloroplast-encoded photosynthetic genes are significantly decreased in the albino mutants. In contrast, transcript levels of nuclear and mitochondrial genes encoding subunits of the mitochondrial electron transport chain are increased or not affected in these mutants. Genomic Southern blot analysis revealed that the DNA amounts of mitochondrial genes are not enhanced in the ispD and ispE albino mutants. These results support the notion that the functional state of chloroplasts may affect the expression of nuclear and mitochondrial genes. The up-regulation of mitochondrial genes in the albino mutants is not caused by changes of mitochondrial DNA copy number in Arabidopsis.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 31, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off