Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars

Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars This study evaluates the chloride binding capacity and the migration of chloride in sodium carbonate-activated slag cements and mortars. The effect on chloride mobility and binding of adding a calcined layered double hydroxide (CLDH) to the binder mix was also assessed. Significantly improved durability characteristics can be achieved for sodium carbonate-activated slag mortars by the addition of small fractions of CLDH, as a consequence of a higher degree of reaction, higher chloride binding capacity, and the refined pore structures present in these modified materials, in comparison with alkali-activated cements produced without CLDH. The addition of CLDH enables the production of sodium carbonate-activated slag cements with notably reduced chloride ingress compared to silicate activated slag cements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars

Loading next page...
 
/lp/springer_journal/chloride-binding-and-mobility-in-sodium-carbonate-activated-slag-00th5RXic8
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
D.O.I.
10.1617/s11527-017-1121-8
Publisher site
See Article on Publisher Site

Abstract

This study evaluates the chloride binding capacity and the migration of chloride in sodium carbonate-activated slag cements and mortars. The effect on chloride mobility and binding of adding a calcined layered double hydroxide (CLDH) to the binder mix was also assessed. Significantly improved durability characteristics can be achieved for sodium carbonate-activated slag mortars by the addition of small fractions of CLDH, as a consequence of a higher degree of reaction, higher chloride binding capacity, and the refined pore structures present in these modified materials, in comparison with alkali-activated cements produced without CLDH. The addition of CLDH enables the production of sodium carbonate-activated slag cements with notably reduced chloride ingress compared to silicate activated slag cements.

Journal

Materials and StructuresSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off