Chloramphenicol acetyltransferase as selectable marker for plastid transformation

Chloramphenicol acetyltransferase as selectable marker for plastid transformation Chloroplast transformation remains a demanding technique and is still restricted to relatively few plant species. The limited availability of selectable marker genes and the lack of selection markers that would be universally applicable to all plant species represent some of the most serious technical problems involved in extending the species range of plastid transformation. Here we report the development of the chloramphenicol acetyltransferase gene cat as a new selectable marker for plastid transformation. We show that, by selecting for chloramphenicol resistance, tobacco chloroplast transformants are readily obtained. Transplastomic lines quickly reach the homoplasmic state (typically in one additional regeneration round), accumulate the chloramphenicol acetyltransferase enzyme to high levels and transmit their plastid transgenes maternally into the next generation. No spontaneous antibiotic resistance mutants appear upon chloramphenicol selection. Several lines of evidence support the assumption that plant mitochondria are also sensitive to chloramphenicol suggesting that the chloramphenicol acetyltransferase may be a good candidate selectable marker for plant mitochondrial transformation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Chloramphenicol acetyltransferase as selectable marker for plastid transformation

Loading next page...
 
/lp/springer_journal/chloramphenicol-acetyltransferase-as-selectable-marker-for-plastid-Vx0ff1wMes
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Sciences ; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9678-4
Publisher site
See Article on Publisher Site

Abstract

Chloroplast transformation remains a demanding technique and is still restricted to relatively few plant species. The limited availability of selectable marker genes and the lack of selection markers that would be universally applicable to all plant species represent some of the most serious technical problems involved in extending the species range of plastid transformation. Here we report the development of the chloramphenicol acetyltransferase gene cat as a new selectable marker for plastid transformation. We show that, by selecting for chloramphenicol resistance, tobacco chloroplast transformants are readily obtained. Transplastomic lines quickly reach the homoplasmic state (typically in one additional regeneration round), accumulate the chloramphenicol acetyltransferase enzyme to high levels and transmit their plastid transgenes maternally into the next generation. No spontaneous antibiotic resistance mutants appear upon chloramphenicol selection. Several lines of evidence support the assumption that plant mitochondria are also sensitive to chloramphenicol suggesting that the chloramphenicol acetyltransferase may be a good candidate selectable marker for plant mitochondrial transformation.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 19, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off