Chitosan/gelatin scaffolds support bone regeneration

Chitosan/gelatin scaffolds support bone regeneration Chitosan/Gelatin (CS:Gel) scaffolds were fabricated by chemical crosslinking with glutaraldehyde or genipin by freeze drying. Both crosslinked CS:Gel scaffold types with a mass ratio of 40:60% form a gel-like structure with interconnected pores. Dynamic rheological measurements provided similar values for the storage modulus and the loss modulus of the CS:Gel scaffolds when crosslinked with the same concentration of glutaraldehyde vs. genipin. Compared to genipin, the glutaraldehyde-crosslinked scaffolds supported strong adhesion and infiltration of pre-osteoblasts within the pores as well as survival and proliferation of both MC3T3-E1 pre-osteoblastic cells after 7 days in culture, and human bone marrow mesenchymal stem cells (BM-MSCs) after 14 days in culture. The levels of collagen secreted into the extracellular matrix by the pre-osteoblasts cultured for 4 and 7 days on the CS:Gel scaffolds, significantly increased when compared to the tissue culture polystyrene (TCPS) control surface. Human BM-MSCs attached and infiltrated within the pores of the CS:Gel scaffolds allowing for a significant increase of the osteogenic gene expression of RUNX2, ALP, and OSC. Histological data following implantation of a CS:Gel scaffold into a mouse femur demonstrated that the scaffolds support the formation of extracellular matrix, while fibroblasts surrounding the porous scaffold produce collagen with minimal inflammatory reaction. These results show the potential of CS:Gel scaffolds to support new tissue formation and thus provide a promising strategy for bone tissue engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Medicine Springer Journals
Loading next page...
 
/lp/springer_journal/chitosan-gelatin-scaffolds-support-bone-regeneration-DkdA3nEBgp
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Biomaterials; Biomedical Engineering; Regenerative Medicine/Tissue Engineering; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films
ISSN
0957-4530
eISSN
1573-4838
D.O.I.
10.1007/s10856-018-6064-2
Publisher site
See Article on Publisher Site

Abstract

Chitosan/Gelatin (CS:Gel) scaffolds were fabricated by chemical crosslinking with glutaraldehyde or genipin by freeze drying. Both crosslinked CS:Gel scaffold types with a mass ratio of 40:60% form a gel-like structure with interconnected pores. Dynamic rheological measurements provided similar values for the storage modulus and the loss modulus of the CS:Gel scaffolds when crosslinked with the same concentration of glutaraldehyde vs. genipin. Compared to genipin, the glutaraldehyde-crosslinked scaffolds supported strong adhesion and infiltration of pre-osteoblasts within the pores as well as survival and proliferation of both MC3T3-E1 pre-osteoblastic cells after 7 days in culture, and human bone marrow mesenchymal stem cells (BM-MSCs) after 14 days in culture. The levels of collagen secreted into the extracellular matrix by the pre-osteoblasts cultured for 4 and 7 days on the CS:Gel scaffolds, significantly increased when compared to the tissue culture polystyrene (TCPS) control surface. Human BM-MSCs attached and infiltrated within the pores of the CS:Gel scaffolds allowing for a significant increase of the osteogenic gene expression of RUNX2, ALP, and OSC. Histological data following implantation of a CS:Gel scaffold into a mouse femur demonstrated that the scaffolds support the formation of extracellular matrix, while fibroblasts surrounding the porous scaffold produce collagen with minimal inflammatory reaction. These results show the potential of CS:Gel scaffolds to support new tissue formation and thus provide a promising strategy for bone tissue engineering.

Journal

Journal of Materials Science: Materials in MedicineSpringer Journals

Published: May 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off