Chitosan: A N-doped carbon source of silicon-based anode material for lithium ion batteries

Chitosan: A N-doped carbon source of silicon-based anode material for lithium ion batteries Silicon/graphite/carbon (Si/G/CTS-C) composite, based on nano-silicon, flake graphite, and chitosan-derived carbon (CTS-C), was prepared by spray drying and subsequent pyrolysis. The results of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy illustrate that chitosan is a good dispersion agent and chitosan-derived carbon is N-doped. The results indicate that the initial charge capacity of Si/G/CTS-C composite is 613.9 mAh g−1 at a current density of 100 mA g−1 corresponding to an initial coulombic efficiency of 81.89%. Besides, the Si/G/CTS-C composite exhibits higher specific capacity, more superior rate capability, better cycling performance, and lower impedance than that of silicon/graphite/phenolic resin-derived carbon (Si/G/P-C) composite. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Chitosan: A N-doped carbon source of silicon-based anode material for lithium ion batteries

Loading next page...
 
/lp/springer_journal/chitosan-a-n-doped-carbon-source-of-silicon-based-anode-material-for-zBHLkta0Wn
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
D.O.I.
10.1007/s11581-017-2073-2
Publisher site
See Article on Publisher Site

Abstract

Silicon/graphite/carbon (Si/G/CTS-C) composite, based on nano-silicon, flake graphite, and chitosan-derived carbon (CTS-C), was prepared by spray drying and subsequent pyrolysis. The results of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy illustrate that chitosan is a good dispersion agent and chitosan-derived carbon is N-doped. The results indicate that the initial charge capacity of Si/G/CTS-C composite is 613.9 mAh g−1 at a current density of 100 mA g−1 corresponding to an initial coulombic efficiency of 81.89%. Besides, the Si/G/CTS-C composite exhibits higher specific capacity, more superior rate capability, better cycling performance, and lower impedance than that of silicon/graphite/phenolic resin-derived carbon (Si/G/P-C) composite.

Journal

IonicsSpringer Journals

Published: Mar 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off