Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter

Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a... Plants integrate and monitor low temperature signals to cope with the continual variations in their environment. Arabidopsis thaliana cold responsive-element binding factor 3 (AtCBF3) plays its role in various cellular activities by modulating multiple genes induced under chilling stress. In this work, AtCBF3 transcription was remarkably induced following chilling stress. AtCBF3-overexpressors namely AtCBF3-Rio Grande, AtCBF3-Moneymaker, and AtCBF3-Roma showed defensible response to various levels of chilling stress, while their isogenic wild type plants indicated hypersensitive response to chilling stress. Detailed photosynthetic studies revealed that AtCBF3 gene has harmonious influences on the expression of a large set of genes by virtue of improved stomatal conductance, transpiration rate, intercellular CO2 concentration, and photosynthetic rate compared to wild type plants. The AtCBF3 lines limited the water status-mediated hypersensitive response by lowering leaf osmotic potential due to overexpression of AtCBF3 under chilling stress. Biochemical analyses followed by phenotypic studies demonstrated that AtCBF3 plants exhibited membrane stability and lush green appearance by limiting membrane ions leakage and malondialdehyde contents and by accumulating more proline, soluble sugars, chlorophyll contents, carotenoid contents, and antioxidant enzymes relative to wild type plants. Hence, with a several lines of evidence, these findings support that tomato transgenic plants overexpressing Arabidopsis CBF3 show enhanced chilling tolerance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter

Loading next page...
 
/lp/springer_journal/chilling-tolerance-in-three-tomato-transgenic-lines-overexpressing-mggXSxGNyR
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9460-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial