Chern class of Schubert cells in the flag manifold and related algebras

Chern class of Schubert cells in the flag manifold and related algebras We discuss a relationship between Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds, the Fomin–Kirillov algebra, and the generalized nil-Hecke algebra. We show that the nonnegativity conjecture in the Fomin–Kirillov algebra implies the nonnegativity of the Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds for type A. Motivated by this connection, we also prove that the (equivariant) Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds are certain summations of the structure constants of the equivariant cohomology of Bott–Samelson varieties. We also discuss refined positivity conjectures of the Chern–Schwartz–MacPherson classes for Schubert cells motivated by the nonnegativity conjecture in the Fomin–Kirillov algebra. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Algebraic Combinatorics Springer Journals

Chern class of Schubert cells in the flag manifold and related algebras

Loading next page...
 
/lp/springer_journal/chern-class-of-schubert-cells-in-the-flag-manifold-and-related-6o0rWg6OBV
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Mathematics; Combinatorics; Convex and Discrete Geometry; Order, Lattices, Ordered Algebraic Structures; Computer Science, general; Group Theory and Generalizations
ISSN
0925-9899
eISSN
1572-9192
D.O.I.
10.1007/s10801-017-0773-3
Publisher site
See Article on Publisher Site

Abstract

We discuss a relationship between Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds, the Fomin–Kirillov algebra, and the generalized nil-Hecke algebra. We show that the nonnegativity conjecture in the Fomin–Kirillov algebra implies the nonnegativity of the Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds for type A. Motivated by this connection, we also prove that the (equivariant) Chern–Schwartz–MacPherson classes for Schubert cells in flag manifolds are certain summations of the structure constants of the equivariant cohomology of Bott–Samelson varieties. We also discuss refined positivity conjectures of the Chern–Schwartz–MacPherson classes for Schubert cells motivated by the nonnegativity conjecture in the Fomin–Kirillov algebra.

Journal

Journal of Algebraic CombinatoricsSpringer Journals

Published: Jun 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial