Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis

Chemosensory cues of predators and competitors influence search for refuge in fruit by the... Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A. guerreronis to cues from the predators Neoseiulus baraki and Amblyseius largoensis in coconut fruits, cues from conspecifics (A. guerreronis injured) and cues from the phytophage S. concavuscutum. The test was carried out through the release of about 300 A. guerreronis on coconut fruits previously treated with cues from predators, conspecific or heterospecific phytophagous. We also observed the walking behaviour of A. guerreronis exposed to the same chemical cues using a video tracking system. The infestation of fruits by A. guerreronis was greater in the presence of predator cues and reduced in the presence of S. concavuscutum cues, but cues from injured conspecifics did not interfere in the infestation process. In addition, the cues also altered the walking parameters of A. guerreronis: it walked more in response to cues from predators and the heterospecific phytophage. Aceria guerreronis spent more time in activity in the treatments with clues than in the control treatment. These results suggest that A. guerreronis recognizes cues from predators and competitors and modifies its behaviour to increase its fitness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental and Applied Acarology Springer Journals

Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis

Loading next page...
 
/lp/springer_journal/chemosensory-cues-of-predators-and-competitors-influence-search-for-tDtqNll9fC
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Life Sciences; Entomology; Animal Systematics/Taxonomy/Biogeography; Animal Genetics and Genomics; Animal Ecology; Life Sciences, general
ISSN
0168-8162
eISSN
1572-9702
D.O.I.
10.1007/s10493-018-0233-3
Publisher site
See Article on Publisher Site

Abstract

Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A. guerreronis to cues from the predators Neoseiulus baraki and Amblyseius largoensis in coconut fruits, cues from conspecifics (A. guerreronis injured) and cues from the phytophage S. concavuscutum. The test was carried out through the release of about 300 A. guerreronis on coconut fruits previously treated with cues from predators, conspecific or heterospecific phytophagous. We also observed the walking behaviour of A. guerreronis exposed to the same chemical cues using a video tracking system. The infestation of fruits by A. guerreronis was greater in the presence of predator cues and reduced in the presence of S. concavuscutum cues, but cues from injured conspecifics did not interfere in the infestation process. In addition, the cues also altered the walking parameters of A. guerreronis: it walked more in response to cues from predators and the heterospecific phytophage. Aceria guerreronis spent more time in activity in the treatments with clues than in the control treatment. These results suggest that A. guerreronis recognizes cues from predators and competitors and modifies its behaviour to increase its fitness.

Journal

Experimental and Applied AcarologySpringer Journals

Published: Feb 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off