Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Chemometrics-assisted microfluidic paper-based analytical device for the determination of uric acid by silver nanoparticle plasmon resonance

Chemometrics-assisted microfluidic paper-based analytical device for the determination of uric... This manuscript reports on the application of chemometric methods for the development of an optimized microfluidic paper-based analytical device (μPAD). As an example, we applied chemometric methods for both device optimization and data processing of results of a colorimetric uric acid assay. Box–Behnken designs (BBD) were utilized for the optimization of the device geometry and the amount of thermal inkjet-deposited assay reagents, which affect the assay performance. Measurement outliers were detected in real time by partial least squares discriminant analysis (PLS-DA) of scanned images. The colorimetric assay mechanism is based on the on-device formation of silver nanoparticles (AgNPs) through the interaction of uric acid, ammonia, and poly(vinyl alcohol) with silver ions under mild basic conditions. The yellow color originating from visible light absorption by localized surface plasmon resonance of AgNPs can be detected by the naked eye or, more quantitatively, with a simple flat-bed scanner. Under optimized conditions, the linearity of the calibration curve ranges from 0.1–5 × 10−3 mol L−1 of uric acid with a limit of detection of 33.9 × 10−6 mol L−1 and a relative standard of deviation 4.5% (n = 3 for determination of 5.0 × 10−3 mol L−1 uric acid). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical and Bioanalytical Chemistry Springer Journals

Chemometrics-assisted microfluidic paper-based analytical device for the determination of uric acid by silver nanoparticle plasmon resonance

Loading next page...
 
/lp/springer_journal/chemometrics-assisted-microfluidic-paper-based-analytical-device-for-LjIRALVJ7O

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Analytical Chemistry; Biochemistry, general; Laboratory Medicine; Characterization and Evaluation of Materials; Food Science; Monitoring/Environmental Analysis
ISSN
1618-2642
eISSN
1618-2650
DOI
10.1007/s00216-018-0879-z
pmid
29435632
Publisher site
See Article on Publisher Site

Abstract

This manuscript reports on the application of chemometric methods for the development of an optimized microfluidic paper-based analytical device (μPAD). As an example, we applied chemometric methods for both device optimization and data processing of results of a colorimetric uric acid assay. Box–Behnken designs (BBD) were utilized for the optimization of the device geometry and the amount of thermal inkjet-deposited assay reagents, which affect the assay performance. Measurement outliers were detected in real time by partial least squares discriminant analysis (PLS-DA) of scanned images. The colorimetric assay mechanism is based on the on-device formation of silver nanoparticles (AgNPs) through the interaction of uric acid, ammonia, and poly(vinyl alcohol) with silver ions under mild basic conditions. The yellow color originating from visible light absorption by localized surface plasmon resonance of AgNPs can be detected by the naked eye or, more quantitatively, with a simple flat-bed scanner. Under optimized conditions, the linearity of the calibration curve ranges from 0.1–5 × 10−3 mol L−1 of uric acid with a limit of detection of 33.9 × 10−6 mol L−1 and a relative standard of deviation 4.5% (n = 3 for determination of 5.0 × 10−3 mol L−1 uric acid).

Journal

Analytical and Bioanalytical ChemistrySpringer Journals

Published: Feb 12, 2018

There are no references for this article.