Chemical Modification Reveals Involvement of Different Sites for Nucleotide Analogues in the Phosphatase Activity of the Red Cell Calcium Pump

Chemical Modification Reveals Involvement of Different Sites for Nucleotide Analogues in the... The calcium pump of plasma membranes catalyzes the hydrolysis of ATP and phosphoric esters like p-nitrophenyl phosphate (pNPP). The latter activity requires the presence of ATP and/or calmodulin, and Ca2+ [22, 25]. We have studied the effects of nucleotide-analogues and chemical modifications of nucleotide binding sites on Ca2+-pNPPase activity. Treatment with fluorescein isothiocyanate (FITC), abolished Ca2+-ATPase and ATP-dependent pNPPase, but affected only 45% of the calmodulin-dependent pNPPase activity. The nucleotide analogue eosin-Y had an inhibitory effect on calmodulin-dependent pNPPase (Ki eosin-Y= 2 μm). FITC treatment increased Ki eosin-Y 15 times. Acetylation of lysine residues with N-hydroxysuccinimidyl acetate inactivates Ca2+-ATPase by modifying the catalytic site, and impairs stimulation by modulators by modifying residues outside this site [9]. Acetylation suppressed the ATP-dependent pNPPase with biphasic kinetics. ATP or pNPP during acetylation cancels the fast component of inactivation. Acetylation inhibited only partially the calmodulin-dependent pNPPase, but neither ATP nor pNPP prevented this inactivation. From these results we conclude: (i) ATP-dependent pNPPase depends on binding of ATP to the catalytic site; (ii) the catalytic site plays no role in calmodulin-dependent pNPPase. The decreased affinity for eosin-Y of the FITC-modified enzyme, suggests that the sites for these two molecules are closely related but not overlapped. Acetimidation of the pump inhibited totally the calmodulin-dependent pNPPase, but only partially the ATP-pNPPase. Since calmodulin binds to E1, the E1 conformation or the E2? E1 transition would be involved during calmodulin-dependent pNPPase activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Chemical Modification Reveals Involvement of Different Sites for Nucleotide Analogues in the Phosphatase Activity of the Red Cell Calcium Pump

Loading next page...
 
/lp/springer_journal/chemical-modification-reveals-involvement-of-different-sites-for-NSl0eagf30
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900385
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial