Chemical Modification Reveals Involvement of Different Sites for Nucleotide Analogues in the Phosphatase Activity of the Red Cell Calcium Pump

Chemical Modification Reveals Involvement of Different Sites for Nucleotide Analogues in the... The calcium pump of plasma membranes catalyzes the hydrolysis of ATP and phosphoric esters like p-nitrophenyl phosphate (pNPP). The latter activity requires the presence of ATP and/or calmodulin, and Ca2+ [22, 25]. We have studied the effects of nucleotide-analogues and chemical modifications of nucleotide binding sites on Ca2+-pNPPase activity. Treatment with fluorescein isothiocyanate (FITC), abolished Ca2+-ATPase and ATP-dependent pNPPase, but affected only 45% of the calmodulin-dependent pNPPase activity. The nucleotide analogue eosin-Y had an inhibitory effect on calmodulin-dependent pNPPase (Ki eosin-Y= 2 μm). FITC treatment increased Ki eosin-Y 15 times. Acetylation of lysine residues with N-hydroxysuccinimidyl acetate inactivates Ca2+-ATPase by modifying the catalytic site, and impairs stimulation by modulators by modifying residues outside this site [9]. Acetylation suppressed the ATP-dependent pNPPase with biphasic kinetics. ATP or pNPP during acetylation cancels the fast component of inactivation. Acetylation inhibited only partially the calmodulin-dependent pNPPase, but neither ATP nor pNPP prevented this inactivation. From these results we conclude: (i) ATP-dependent pNPPase depends on binding of ATP to the catalytic site; (ii) the catalytic site plays no role in calmodulin-dependent pNPPase. The decreased affinity for eosin-Y of the FITC-modified enzyme, suggests that the sites for these two molecules are closely related but not overlapped. Acetimidation of the pump inhibited totally the calmodulin-dependent pNPPase, but only partially the ATP-pNPPase. Since calmodulin binds to E1, the E1 conformation or the E2? E1 transition would be involved during calmodulin-dependent pNPPase activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Chemical Modification Reveals Involvement of Different Sites for Nucleotide Analogues in the Phosphatase Activity of the Red Cell Calcium Pump

Loading next page...
 
/lp/springer_journal/chemical-modification-reveals-involvement-of-different-sites-for-NSl0eagf30
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900385
Publisher site
See Article on Publisher Site

Abstract

The calcium pump of plasma membranes catalyzes the hydrolysis of ATP and phosphoric esters like p-nitrophenyl phosphate (pNPP). The latter activity requires the presence of ATP and/or calmodulin, and Ca2+ [22, 25]. We have studied the effects of nucleotide-analogues and chemical modifications of nucleotide binding sites on Ca2+-pNPPase activity. Treatment with fluorescein isothiocyanate (FITC), abolished Ca2+-ATPase and ATP-dependent pNPPase, but affected only 45% of the calmodulin-dependent pNPPase activity. The nucleotide analogue eosin-Y had an inhibitory effect on calmodulin-dependent pNPPase (Ki eosin-Y= 2 μm). FITC treatment increased Ki eosin-Y 15 times. Acetylation of lysine residues with N-hydroxysuccinimidyl acetate inactivates Ca2+-ATPase by modifying the catalytic site, and impairs stimulation by modulators by modifying residues outside this site [9]. Acetylation suppressed the ATP-dependent pNPPase with biphasic kinetics. ATP or pNPP during acetylation cancels the fast component of inactivation. Acetylation inhibited only partially the calmodulin-dependent pNPPase, but neither ATP nor pNPP prevented this inactivation. From these results we conclude: (i) ATP-dependent pNPPase depends on binding of ATP to the catalytic site; (ii) the catalytic site plays no role in calmodulin-dependent pNPPase. The decreased affinity for eosin-Y of the FITC-modified enzyme, suggests that the sites for these two molecules are closely related but not overlapped. Acetimidation of the pump inhibited totally the calmodulin-dependent pNPPase, but only partially the ATP-pNPPase. Since calmodulin binds to E1, the E1 conformation or the E2? E1 transition would be involved during calmodulin-dependent pNPPase activity.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off