Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials

Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert... Hard-inert materials such as diamond, silicon carbide, gallium nitride, and sapphire are difficult to obtain from the smooth and damage-free surfaces efficiently required by semiconductor field. Therefore, this study proposed a chemical kinetics model to evaluate the material removal rate of diamond in chemical mechanical polishing process and to investigate the material removal mechanism by examining the surface information with optical microscopy, surface profilometry, and atomic force microscopy as well as X-ray photoelectron spectroscopy. The theoretical and experimental results show that chemical and mechanical synergic effect may promote the diamond oxidation reaction in chemical kinetics. The material removal rate is acceptable when the mechanical activation coefficient is smaller than 0.48. The 2.5 μm B4C abrasives, the polishing temperature of 50 °C, and the polishing pressure of 266.7 MPa are optimal parameters for diamond polishing with potassium ferrate slurry. It provides the highest material removal rate of 0.055 mg/h, the best surface finish (about Ra 0.5 nm) and surface quality (no surface scratches or pits). It then discusses how mechanical stress may promote the chemical oxidation of oxidant and diamond by forming “C-O,” “C=O,” and “O=C-OH” on diamond surface. The study concludes that chemical kinetics mechanism is effective for the investigation of the synergic effect in chemical mechanical polishing hard-inert materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials

Loading next page...
 
/lp/springer_journal/chemical-kinetics-mechanism-for-chemical-mechanical-polishing-diamond-8eU9t7KouT
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1336-4
Publisher site
See Article on Publisher Site

Abstract

Hard-inert materials such as diamond, silicon carbide, gallium nitride, and sapphire are difficult to obtain from the smooth and damage-free surfaces efficiently required by semiconductor field. Therefore, this study proposed a chemical kinetics model to evaluate the material removal rate of diamond in chemical mechanical polishing process and to investigate the material removal mechanism by examining the surface information with optical microscopy, surface profilometry, and atomic force microscopy as well as X-ray photoelectron spectroscopy. The theoretical and experimental results show that chemical and mechanical synergic effect may promote the diamond oxidation reaction in chemical kinetics. The material removal rate is acceptable when the mechanical activation coefficient is smaller than 0.48. The 2.5 μm B4C abrasives, the polishing temperature of 50 °C, and the polishing pressure of 266.7 MPa are optimal parameters for diamond polishing with potassium ferrate slurry. It provides the highest material removal rate of 0.055 mg/h, the best surface finish (about Ra 0.5 nm) and surface quality (no surface scratches or pits). It then discusses how mechanical stress may promote the chemical oxidation of oxidant and diamond by forming “C-O,” “C=O,” and “O=C-OH” on diamond surface. The study concludes that chemical kinetics mechanism is effective for the investigation of the synergic effect in chemical mechanical polishing hard-inert materials.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off