Chemical interaction, interfacial effect and the microstructural characterization of the induced zinc–aluminum–Solanum tuberosum in chloride solution on mild steel

Chemical interaction, interfacial effect and the microstructural characterization of the induced... In this study, we report the effect of Solanum tuberosum (ST) as a strong additive on the morphological interaction, wear, and hardness properties of electroplated zinc coating in chloride bath solutions. The structural and the mechanical behavior of the Zn–Al–ST coating were studied and compared with the properties of Zn coatings. Characterization of the electrodeposited coatings were carried out using scanning electron microscopy, energy dispersive spectrometer, AFM, and X-ray diffraction techniques. The adhesion between the coatings and substrate was examined mechanically using hardness and wear techniques. From the results, amorphous Zn–Al–ST coatings were effectively obtained by electrodeposition using direct current. The coating morphology was revealed to be reliant on the bath composition containing strong leveling additives. From all indications, ST content contribute to a strong interfacial surface effect leading to crack-free and better morphology, good hardness properties, and improved wear resistance due to the precipitation of Zn2Si and Zn7Al2Si3. Hence, addition of ST is beneficial for the structural strengthening, hardness, and wear resistance properties of such coatings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Chemical interaction, interfacial effect and the microstructural characterization of the induced zinc–aluminum–Solanum tuberosum in chloride solution on mild steel

Loading next page...
 
/lp/springer_journal/chemical-interaction-interfacial-effect-and-the-microstructural-EZ2t2WPMO4
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1354-2
Publisher site
See Article on Publisher Site

Abstract

In this study, we report the effect of Solanum tuberosum (ST) as a strong additive on the morphological interaction, wear, and hardness properties of electroplated zinc coating in chloride bath solutions. The structural and the mechanical behavior of the Zn–Al–ST coating were studied and compared with the properties of Zn coatings. Characterization of the electrodeposited coatings were carried out using scanning electron microscopy, energy dispersive spectrometer, AFM, and X-ray diffraction techniques. The adhesion between the coatings and substrate was examined mechanically using hardness and wear techniques. From the results, amorphous Zn–Al–ST coatings were effectively obtained by electrodeposition using direct current. The coating morphology was revealed to be reliant on the bath composition containing strong leveling additives. From all indications, ST content contribute to a strong interfacial surface effect leading to crack-free and better morphology, good hardness properties, and improved wear resistance due to the precipitation of Zn2Si and Zn7Al2Si3. Hence, addition of ST is beneficial for the structural strengthening, hardness, and wear resistance properties of such coatings.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 14, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off