Chemical characterization of PM2.5 collected from a rural coastal island of the Bay of Bengal (Bhola, Bangladesh)

Chemical characterization of PM2.5 collected from a rural coastal island of the Bay of Bengal... This work focuses on the chemical characterization of fine aerosol particles (PM2.5) collected from a rural remote island of the Bay of Bengal (Bhola, Bangladesh) from April to August, 2013. PM2.5 particle-loaded filters were analyzed for organic carbon (OC), elemental carbon (EC), water-soluble ions, and selected saccharides (levoglucosan, mannosan, galactosan, arabitol, and mannitol). The average PM2.5 mass was 15.0 ± 6.9 μg m−3. Organic carbon and elemental carbon comprised roughly half of the analyzed components. Organic carbon was the predominant contributor to total carbon (TC) and accounting for about 28% of PM2.5 mass. Secondary organic carbon (SOC) was inferred to be ~ 26% of OC. The sum of ions comprised ~ 27% of PM2.5 mass. The contribution of sea salt aerosol was smaller than expected for a sea-near site (17%), and very high chloride depletion was observed (78%). NssSO4 2− was a dominant ionic component with an average concentration of 2.0 μg m−3 followed by Na+, NH4 +, and nssCa2+. The average concentration of arabitol and mannitol was 0.11 and 0.14 μg m−3, respectively, while levoglucosan and its stereoisomers (mannosan and galactosan) were bellow detection limit. NH4 +/SO4 2− equivalent ratio was 0.30 ± 0.13 indicating that secondary inorganic aerosol is not the main source of SO4 2−. Enrichment factor (EF) analysis showed that SO4 2− and NO3 − were enriched in atmospheric particles compared to sea aerosol and soil indicating their anthropogenic origin. Higher OC/EC ratio (3.70 ± 0.88) was a good indicator of the secondary organic compounds formation. Other ratios (OC/EC, K+/EC, nssSO4 2−/EC) and correlation analysis suggested mixed sources for carbonaceous components. Arabitol and mannitol both showed strong correlation with EC having R 2 value 0.89 and 0.95, respectively. Air mass trajectories analysis showed that concentrations of soil and anthropogenic species were lower for air masses originating from the sea (May–August) and were higher when air came from land (April). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Chemical characterization of PM2.5 collected from a rural coastal island of the Bay of Bengal (Bhola, Bangladesh)

Loading next page...
 
/lp/springer_journal/chemical-characterization-of-pm2-5-collected-from-a-rural-coastal-2JMsEfchBg
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0695-6
Publisher site
See Article on Publisher Site

Abstract

This work focuses on the chemical characterization of fine aerosol particles (PM2.5) collected from a rural remote island of the Bay of Bengal (Bhola, Bangladesh) from April to August, 2013. PM2.5 particle-loaded filters were analyzed for organic carbon (OC), elemental carbon (EC), water-soluble ions, and selected saccharides (levoglucosan, mannosan, galactosan, arabitol, and mannitol). The average PM2.5 mass was 15.0 ± 6.9 μg m−3. Organic carbon and elemental carbon comprised roughly half of the analyzed components. Organic carbon was the predominant contributor to total carbon (TC) and accounting for about 28% of PM2.5 mass. Secondary organic carbon (SOC) was inferred to be ~ 26% of OC. The sum of ions comprised ~ 27% of PM2.5 mass. The contribution of sea salt aerosol was smaller than expected for a sea-near site (17%), and very high chloride depletion was observed (78%). NssSO4 2− was a dominant ionic component with an average concentration of 2.0 μg m−3 followed by Na+, NH4 +, and nssCa2+. The average concentration of arabitol and mannitol was 0.11 and 0.14 μg m−3, respectively, while levoglucosan and its stereoisomers (mannosan and galactosan) were bellow detection limit. NH4 +/SO4 2− equivalent ratio was 0.30 ± 0.13 indicating that secondary inorganic aerosol is not the main source of SO4 2−. Enrichment factor (EF) analysis showed that SO4 2− and NO3 − were enriched in atmospheric particles compared to sea aerosol and soil indicating their anthropogenic origin. Higher OC/EC ratio (3.70 ± 0.88) was a good indicator of the secondary organic compounds formation. Other ratios (OC/EC, K+/EC, nssSO4 2−/EC) and correlation analysis suggested mixed sources for carbonaceous components. Arabitol and mannitol both showed strong correlation with EC having R 2 value 0.89 and 0.95, respectively. Air mass trajectories analysis showed that concentrations of soil and anthropogenic species were lower for air masses originating from the sea (May–August) and were higher when air came from land (April).

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Nov 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off