Chemical characterization, in vitro biological activity of essential oils and extracts of three Eryngium L. species and molecular docking of selected major compounds

Chemical characterization, in vitro biological activity of essential oils and extracts of three... Many Eryngium species have been traditionally used as ornamental, edible or medicinal plants. The gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC–MS) analyses have shown that the major compounds in the aerial parts were spathulenol (in E. campestre and E. palmatum oils) and germacrene D (in E. amethystinum oil). The main compounds in the root oil were nonanoic acid, 2,3,4-trimethylbenzaldehyde and octanoic acid for E. campestre, E. amethystinum and E. palmatum, respectively. All the oils expressed the highest potential against Gram-positive bacteria Staphylococcus aureus as well as Gram-negative Klebsiella pneumoniae and Proteus mirabilis. Molecular docking analysis was used for determining a potential antibacterial activity mechanism of compounds present in the essential oils. Molecular docking confirmed that the binding affinity of spathulenol to the active site of tyrosyl-tRNA synthetase was the highest among the tested dominant compounds. Regarding the total phenolic content (determined by the Folin–Ciocalteu assay) and flavonoid content (evaluated using aluminum nitrate nonahydrate), the highest amount was found in the ethyl acetate extract of E. palmatum. The results of DPPH and ABTS assay indicated that the highest antioxidant activity was present in the water extract of E. amethystinum. Extracts of the aerial parts presented as minimum inhibitory concentration (MIC) expressed the activity in the range 0.004–20.00 mg/mL, with the highest activity exhibited by the acetone and ethyl acetate extracts against Proteus mirabilis. The obtained results suggest that Eryngium species may be considered a beneficial native source of the compounds with antioxidant and antimicrobial properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Science and Technology Springer Journals

Chemical characterization, in vitro biological activity of essential oils and extracts of three Eryngium L. species and molecular docking of selected major compounds

Loading next page...
 
/lp/springer_journal/chemical-characterization-in-vitro-biological-activity-of-essential-K0C6Y0I186
Publisher
Springer India
Copyright
Copyright © 2018 by Association of Food Scientists & Technologists (India)
Subject
Chemistry; Food Science; Nutrition; Chemistry/Food Science, general
ISSN
0022-1155
eISSN
0975-8402
D.O.I.
10.1007/s13197-018-3209-8
Publisher site
See Article on Publisher Site

Abstract

Many Eryngium species have been traditionally used as ornamental, edible or medicinal plants. The gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC–MS) analyses have shown that the major compounds in the aerial parts were spathulenol (in E. campestre and E. palmatum oils) and germacrene D (in E. amethystinum oil). The main compounds in the root oil were nonanoic acid, 2,3,4-trimethylbenzaldehyde and octanoic acid for E. campestre, E. amethystinum and E. palmatum, respectively. All the oils expressed the highest potential against Gram-positive bacteria Staphylococcus aureus as well as Gram-negative Klebsiella pneumoniae and Proteus mirabilis. Molecular docking analysis was used for determining a potential antibacterial activity mechanism of compounds present in the essential oils. Molecular docking confirmed that the binding affinity of spathulenol to the active site of tyrosyl-tRNA synthetase was the highest among the tested dominant compounds. Regarding the total phenolic content (determined by the Folin–Ciocalteu assay) and flavonoid content (evaluated using aluminum nitrate nonahydrate), the highest amount was found in the ethyl acetate extract of E. palmatum. The results of DPPH and ABTS assay indicated that the highest antioxidant activity was present in the water extract of E. amethystinum. Extracts of the aerial parts presented as minimum inhibitory concentration (MIC) expressed the activity in the range 0.004–20.00 mg/mL, with the highest activity exhibited by the acetone and ethyl acetate extracts against Proteus mirabilis. The obtained results suggest that Eryngium species may be considered a beneficial native source of the compounds with antioxidant and antimicrobial properties.

Journal

Journal of Food Science and TechnologySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off