Chemical and physical characterizations of the n=1 Ruddlesden–Popper phases: Nd2−y Sr y Ni1−x Co x O4±δ (y=1 and 0.1≤x≤0.9)

Chemical and physical characterizations of the n=1 Ruddlesden–Popper phases: Nd2−y Sr y... The structural stability and physical properties of NdSrNi1 − x Co x O4 ± δ (0.1 ≤ x ≤ 0.9) mixed oxides, elaborated by conventional sol–gel process, have been investigated and obtained results show that substitution of nickel by cobalt at x = 0.5 enhances conductivity at room temperature; σ = 17.24 Ω−1 cm−1 coinciding with minimum activation energy (E a = 0.05 eV). Rietveld refinements of X-ray powder diffraction patterns at room temperature indicate that all compositions crystallize in a tetragonal system with I4/mmm space group and exhibit K2NiF4-type structure. Variations of a and c parameters display various behavior with increasing cobalt content. Changes in cell parameters are discussed in terms of crystal field theory. In addition, transition metal oxidation state is investigated on the basis of the Brown bond valence calculation. The deduced Global Instability Index (GII) value decreases when cobalt substance increases, indicating that the structure becomes more stable once cobalt is introduced. Oxygen stoichiometry of these compounds was determined from thermogravimetric analyses (TGA) followed by reduction in 5% H2 in N2 gas. Conductivity of NdSrNi1 − x Co x O4 ± δ (0.1 ≤ x ≤ 0.9) oxides was measured by an ac four-probe method. Oxygen vacancies are the possible ionic charge carriers. Specimens exhibit a semiconducting behavior in the whole range of temperature. The electrical transport mechanism agrees with an adiabatic small polaron hopping (ASPH) model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Chemical and physical characterizations of the n=1 Ruddlesden–Popper phases: Nd2−y Sr y Ni1−x Co x O4±δ (y=1 and 0.1≤x≤0.9)

Loading next page...
 
/lp/springer_journal/chemical-and-physical-characterizations-of-the-n-1-ruddlesden-popper-igSJuQIg0c
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
D.O.I.
10.1007/s11581-017-2167-x
Publisher site
See Article on Publisher Site

Abstract

The structural stability and physical properties of NdSrNi1 − x Co x O4 ± δ (0.1 ≤ x ≤ 0.9) mixed oxides, elaborated by conventional sol–gel process, have been investigated and obtained results show that substitution of nickel by cobalt at x = 0.5 enhances conductivity at room temperature; σ = 17.24 Ω−1 cm−1 coinciding with minimum activation energy (E a = 0.05 eV). Rietveld refinements of X-ray powder diffraction patterns at room temperature indicate that all compositions crystallize in a tetragonal system with I4/mmm space group and exhibit K2NiF4-type structure. Variations of a and c parameters display various behavior with increasing cobalt content. Changes in cell parameters are discussed in terms of crystal field theory. In addition, transition metal oxidation state is investigated on the basis of the Brown bond valence calculation. The deduced Global Instability Index (GII) value decreases when cobalt substance increases, indicating that the structure becomes more stable once cobalt is introduced. Oxygen stoichiometry of these compounds was determined from thermogravimetric analyses (TGA) followed by reduction in 5% H2 in N2 gas. Conductivity of NdSrNi1 − x Co x O4 ± δ (0.1 ≤ x ≤ 0.9) oxides was measured by an ac four-probe method. Oxygen vacancies are the possible ionic charge carriers. Specimens exhibit a semiconducting behavior in the whole range of temperature. The electrical transport mechanism agrees with an adiabatic small polaron hopping (ASPH) model.

Journal

IonicsSpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off